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Snort Signatures for AB/ML Metasploit 
Major Fault Attack 

Objective 

The objective of this work was to write alert signatures for Snort to detect the Metasploit Fault attack on 

the Allen-Bradley/Rockwell Automation MicroLogix 1400 series controllers.  The first objective was to 

write a Snort IDS rule that would detect the malicious traffic generated by the exploit.  The second 

objective was to write a rule that identifies only “approved traffic” and alerts on all other traffic by 

tightening the Snort rule to only data that puts the controller into a fault state. 

Approach 

The approach to this work was to examine both the exploit in action through packet captures and 

analysis, as well as through a review of the Metasploit .rb file which dictates how the packets will be 

created and sent to the MicroLogix controller.  After understanding how the attack functioned a Snort 

rule was written to detect traffic that matched the exploit traffic from a generic level.  As the generic 

rule may also trigger false positives on legitimate traffic sent to the controller, in addition to the attack, 

the rule was refined.  After refining the rule, the bytes in the CIP Generic Class section of the payload 

which resulted in a successful fault attack were determined and used to further refine the rule using 

offset and depth information. 

Environment Setup 
For the purposes of this report, the environment was setup as follows: 

10/100 Network 

Hub – replicates 

all trafficSecurityOnion VM

Snort 2.9/Sguil

Promiscuous mode

Backtrack 5 VM

Metasploit

10.0.0.130

Windows 7 VM

RSMicroLogix

10.0.0.125

Allen-Bradley 

MicroLogix PLC

10.0.0.135
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Understanding the Exploit  

To better understand the exploit and its operation, the function of the exploit through examination of its 

usage in metsaploit was conducted.  In addition, the ports and services that are “listening” or used by 

the controller were examined through port scanning, the effect of the exploit on the S2:5/3 bit was 

determined, and finally the attack was dissected through both packet capture and analysis and 

examination of the .rb file to match what was observed on the wire.  

Metasploit Examination 

The exploit was loaded into Metasploit (located at /auxiliary/cybati/micrologix_fault).  The options for 

the attack were examined by running a “show options”.  It appears that the only option that needs to be 

set is the RHOST, as changing the port or attack type (as examined in the .rb file) modifies the attack in 

such a way that the exploit will not function as designed.  The screenshot below shows the use and 

options of the attack:   

 

Figure 1: Metasploit MicroLogix attack options 

The following screenshot shows successful execution of the attack against the controller (note the 

connection and session IDs referred to in this document were not captured in this screenshot, this is to 

illustrate the attack in Metasploit only): 

 

 

Figure 2: Metasploit MicroLogix attack execution 
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Port Scanning 

To examine what other ports may be a used in this attack on the MicroLogix controllers a full nmap scan 

with options (-sT –n –v –p 1-65535) was run against the controller at 10.0.0.135.  The results showed 

two open ports (80/TCP and 44818/TCP) and one closed port (2222/TCP).  Port 80/TCP is used for the 

web interface to the controller, while 2222/TCP is shown as ENIP and 44818/TCP is an unknown service.  

It is likely that the 2222/TCP closed state is related to the fact that ENIP uses 2222/UDP for implicit 

messaging and 44818/TCP is used for explicit messaging. 

Examining the S2:5/3 Bit 

To see the effect of the exploit on the controller, and to prove that the S2 file’s 5/3 bit is “set” as part of 

the exploit, a before and after view of the bit status (using the controller’s web interface) was used.  In 

the first screenshot below we see that the S2:5/3 bit is off and the controller is running normally without 

a fault indication. 

 

Figure 3: Status of the S2:5/3 bit prior to exploit being run 

Next, the exploit was run against the controller which induced the fault condition.  The interface was 

again examined for the presence of the S2:5/3 bit being set.  In the screenshot below we can see that 

the bit is now set and the controller must be manually reset to “reset” the S2:5/3 bit. 
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Figure 4: Status of the S2:5/3 bit post exploitation 

 

Examining the Packets 

Wireshark 

To dissect how the attack operates Wireshark was used to capture packets on the network and the 

results filtered to examine packets sent between Metasploit and the controller as part of the attack.  

The packets, as show in the screenshot below, have the following characteristics: 

The attack requires a total of 12 packets, in order the packets are: 

o Packets 1-3: The TCP connection setup (SYN-SYN/ACK-ACK) 

o Packets 4-6: Register an ENIP session to capture the ENIP Session ID 

o Packets 7-8: Generate and capture the ENIP Connection ID 

o Packet 9: Forge packet and send with CIP data which induces the fault 

o Packets 10-12: Close the TCP connection (ACK-FIN/ACK/ACK-RST) 

 

Figure 5: Wireshark capture of the exploit traffic between Metasploit and the controller 
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 It appears that the forged packet (Packet 9) requires both a session and connection ID to succeed, 

although these connections do not require authentication prior to being accepted and the attacker is 

able to send the forged packet to the controller with minimal information being required on their part. 

Packet and .rb Code Analysis 

To further dissect the packets the options and data included with each packet were examined, including 

ENIP and CIP options, to evaluate how the attack operates.  The tables below show the opening of the 

TCP connection, Session registration and capture of the Session ID, utilizing the Session ID to capture the 

Connection ID, the attack, and the TCP connection close.  In addition, a review of the associated .rb file 

sections is included where necessary. 

The TCP Connection open utilizes a standard open procedure: 

1. TCP Connection Open 

Packet number 

IP Header   TCP Header 

Src IP Dst IP TCP Flags Src port Dst Port 

1 Metasploit Micrologix 1400 S 53436 44818 

2 Micrologix 1400 Metasploit SA 44818 53436 

3 Metasploit Micrologix 1400 A 53436 44818 

 

Table 1: The TCP connection open from the attack  

(note IP’s have been removed and replaced with system monikers) 

The TCP open is simply part of the sock.put(packet) requirement that a TCP session be established prior 

to sending the forged packets.  The source port is chosen randomly from ephemeral ports.  Although, 

after several runs of the attack and analysis of the chosen source port it appears that ports above 50,000 

are used.  The destination port is set by the exploit through the RPORT setting and the target is set by 

RHOST. 

In terms of items to key in on to create a Snort signature we have: 

 The source port will be random 

 The destination port is that of the ENIP/CIP protocol which is 44818/TCP 

 

Next, the exploit registers an ENIP session with the controller on 44818/TCP in order to generate a 

Session ID.  This Session ID will be captured by the module and used in the next series of packets to 

capture the Connection ID which is required by the final attack packet.  The truncated table below 

shows some of the options as set by the exploit: 
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2. Register and Capture Session ID 

Packet 

IP Header   TCP Header ENIP ENIP Header 

Src IP Dst IP 
TCP 
Flags 

Src 
port 

Dst 
Port Session Command Session 

4 Metasploit Micrologix 1400 AP 53436 44818 

0x00000000 
Register 
Session 

0x0065 
Register 
Session 

0x00000000 
Success 

5 Micrologix 1400 Metasploit AP 44818 53436 

0x73E5CCAA 
Register 
Session 

0x0065 
Register 
Session 

0x00000000 
Success 

6 Metasploit Micrologix 1400 A 53436 44818 NA NA NA 

 

Table 2: Session ID request and capture packets 

In terms of actual code in the exploit module used to generate the packet above, we examine the 

following section of code called reqsession: 

def reqsession 

  packet = "" 

  packet += "\x65\x00" # ENCAP_CMD_REGISTERSESSION (2 bytes) 

  packet += "\x04\x00" # encap_length (2 bytes) 

  packet += "\x00\x00\x00\x00" # session identifier (4 bytes) 

  packet += "\x00\x00\x00\x00" # status code (4 bytes) 

  packet += "\x00\x00\x00\x00\x00\x00\x00\x00" # context information (8 bytes) 

  packet += "\x00\x00\x00\x00" # options flags (4 bytes) 

  packet += "\x01\x00" # proto (2 bytes) 

  packet += "\x00\x00" # flags (2 bytes) 

  begin 

   sock.put(packet) 

   response = sock.get_once(-1,8) 

   session_id = response[4..8].unpack("N")[0] # parse allocated session id 

   print_status("Got session id: 0x"+session_id.to_s(16)) 

  TRUNCATED... 

 

The code above generates the portion of the packet used to generate a Session ID through the 0x0065 

(Register Session) value in the command field of the ENIP header.  The variable “packet” is built up with 

other options such as a session identified (0x0), status code (0x0 Success), and other options required by 

the ENIP header.  Again, full packet analysis is included as an attachment.   The module then sends the 
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packet using sock.put(packet) to the controller and evaluates the response.  The response = 

sock.get_once(-1,8) receives the packet back from the controller, and the “session_id” variable is 

populated with the parsed response packet which contains the Session ID.  If successful it prints the 

Session ID to the console, and the truncated section handles errors and error messages. 

In terms of items to key in on to create a Snort signature we have: 

 The attacking system sends a 0x0065 ENIP command to the controller to elicit a session ID 

response 

 These packets are immediately preceded by the TCP connection setup 

 The Session ID changes upon each subsequent connection and is of little value 

 Some of these fields may cause false positives in the signature and should be ignored.  The 

Session ID capture mechanism does not contain the actual attack packet containing the CIP data 

which sets the S2:5/3 fault bit to on 

Once the Session ID is obtained, the attack can connect to the controller to obtain the required 

Connection ID.  The next series of packets elicit a response from the controller which allows the capture 

the Connection ID (note, this is heavily truncated due to the sheer number of fields in ENIP and CIP 

headers): 

3. Using Session ID, Capture Connection ID 

Packet  

IP Header   ENIP ENIP Header CIP 
CIP Connection  
Manager 

Src IP Dst IP Session Command 
Session 
Handle Service 

Request  
Path 0->T, T->0 

7 Metasploit 
Micrologix  

1400 

0x73E5CCAA 
Send RR 

Data 
0x006f 

Send RR Data 0x73E5CCAA 

Unknown 
Service  

0x54 
(Request) 

Connection 
Manager  

(0x01) 

0x80000015 

0x80FE0014 

8 
Micrologix  

1400 Metasploit 

0x73E5CCAA 
Send RR 

Data 
0x006f 

Send RR Data 0x73E5CCAA 

Unknown 
Service  

0x54 
(Response) 

Connection 
Manager  

(0x01) 

0xAACD2C6F 

0x80FE0014 

 

Table 3: Using Session ID, request Connection ID and capture 

The section of code in the module which creates these packets and captures the Connection ID are in 

the section called reqconnection(sessionid).  As we can see, the sessionid variable is passed to this 

function as it is required to build a packet which will elicit the response required. 

The code (truncated) is as follows: 

def reqconnection(sessionid) 

  packet = "" 

  packet += "\x6f\x00" # SEND_RR_DATA (2 bytes) 
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  packet += "\x3e\x00" # encap_length (2 bytes) 

  packet += [sessionid].pack("N") # session identifier (4 bytes) **in our case this was 0x735E5CCAA 

  packet += "\x00\x00\x00\x00" # status code (4 bytes) 

.... 

packet += "\x00\x80" # O->T network connection id (2 bytes) 

packet += "\x14\x00\xfe\x80" # T->O network connection id (4 bytes)  **this appears to be static 

begin 

   sock.put(packet) 

   response = sock.get_once(-1,8) 

   connection_id = response[44..48].unpack("N")[0] # parse allocated connection id 

   print_status("Got connection id: 0x"+connection_id.to_s(16)) 

An analysis of the code shows that the packet is a Send RR Data request in the command field of the 

ENIP header.  The controller responds with a similar message that contains the 0->T network connection 

ID.  The response packet is parsed, looking at bytes 44-48, offset from the start of the ENIP header which 

is directly after the TCP header we will find the Connection ID which will be stored in the connection_id 

variable to be used in the attack packet generation.  In the example the Connection ID was 0xAACD2C6F.  

Note that the packet hex in Wireshark that this value is stored in little Endian. 

In terms of items to key in on to create a Snort signature we have: 

 The static T->0 value as set 0x80FE0014 (note that in packet creation this is backwards due to 

the Endian-ness of the field) 

 The Session ID and controller Connection ID’s are both variable and subject to change and are 

therefore of limited value in a signature 

 These packets are immediately preceded by the ENIP registration packets 

 

Once the attacker has the Session and Connection IDs it is possible to forge the attack pack which sets 

the S2:5/3 bit and implements the fault error on the controller.  The attack packet appears as follows 

(truncated): 
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4. Send Attack 

Packet 

IP Header   ENIP ENIP Header CIP CIP Class Generic 

Src IP Dst IP Session Command Length 
Connection 
ID Service Data 

9 Metasploit 
Micrologix  

1400 

0x73E5CCAA 
Send Unit 

Data 

0x0070 
Send Unit  

Data 49 0xAACD2C6F 

Unknown 
Service  

0x4b 
(Request) 

07 4d 00 3d 09 a9 0a  
0f 00 68 dd ab 02 02 84 

05 00 08 00 08 00 

 

Table 4: Attack packet attributes 

The code that generates this relies upon building a packet in two part (payload1 and payload2) while 

also injecting the Session and Connection ID gathered in packets 5 and 8.  The code that generates the 

attack packet is as follows: 

def forgepacket(sessionid, connectionid, payload1, payload2) 

  packet = "" 

  packet += "\x70\x00" # command: SEND_UNIT_DATA (4 bytes) 

  packet += "\x31\x00" # length (4 bytes) 

  packet += [sessionid].pack("N") # session identifier (4 bytes)  **our session ID was 0x73E5CCAA in this case 

  packet += payload1 #payload1 part 

  packet += [connectionid].pack("N") # connection identifier (4 bytes)  

**our session ID was 0x73E5CCAA in this case 

  packet += payload2 #payload2 part 

  begin 

   sock.put(packet) 

 

This code combines all of the elements into the final attack packet.  Payload 1 is somewhat uninteresting 

in its options as it appears to simply include necessary data elements and fields as required by the 

protocol.  Payload2 presents a more interesting set of data, including one which is not seen in the 

packets until now.  The truncated code we examine next is as follows: 

   .... 

payload2 += "\xb1\x00" # connected data item 

   payload2 += "\x1d\x00" # length 

   payload2 += "\x7d\x14" # connection id 
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   payload2 += "\x4b" # service 

   payload2 += "\x02" # request path size 

   payload2 += "\x20\x67\x24\x01" # request path 

   payload2 += "\x07\x4d\x00\x3d\x09\xa9\x0a\x0f\x00\x68" # cip class generic 

   payload2 += "\xdd\xab\x02\x02\x84\x05\x00\x08\x00\x08\x00" # cip class generic 

 

The exploit appears to generate data which is located in the Data field of the CIP Generic Class section of 

the packet which will be sent to the controller.  To examine other “normal” network traffic between the 

controller and the RSMicroLogix application, data during normal run operations as well as download 

operations was captured to examine this contents of the Data field using Wireshark.  The following 

screenshot depicts legitimate Run operations when connected to the RSMicroLogix application: 

 

 

Figure 6: Wireshark capture between controller and RSMicroLogix application 

In addition, a packet capture of a download of new code to the controller was examined which is 

depicted in the screenshot below: 
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Figure 7: Wireshark capture between controller and RSMicroLogix application w/download 

 

Also worth noting is the fact that the Data field length in normal traffic between the controller and 

application is variable, ranging from 13 to 36 bytes in length.  The attack packet uses a static length of 21 

bytes due to the construction of the Data field section by the exploit. 

In terms of items to key in on to create a Snort signature we have: 

 The attack packet contains a concatenation of payload1, payload2, the Session ID, and the 

Connection ID 

 The Data field under the CIP Class Generic section appears to hold the data which flips the 

S2:5/3 bit to on, causing the logical fault condition on the controller 

 The Data field is static in this attack at 21 bytes in length as well as in content which is known by 

examining either the packet capture or the exploit code itself 

 The attack packet has a ENIP header length of 49 bytes as it is forged by Metasploit 

Snort Rule –Round 1 

Based on the information gathered to this point it is possible to write a generic Snort rule which will 

alert on the attack traffic.  Although it is a better practice to write the rule to catch the vulnerability, and 

not the exploit, given that this attack is not “interactive” in the normal sense we are stuck writing the 

rule to catch the exploit on the wire. 
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Here is the Snort rule which detects the flow, 44818/TCP port usage (note: it is set to alert on the IP of 

the controller in the lab only), the flags in the TCP header, and the content utilizing offset and depth: 

alert tcp any any -> 10.0.0.135/32 44818 (msg: “Metasploit Cybati Allen-Bradley MicroLogix Major 

Fault Error detected!”; flow:established; flags:AP; content: “|70 00 31 00|”; offset:0; depth:4; content: 

“|4B 02 20 67 24 01 07 4D 00 3D 09 A9 0A 0F 00 68 DD AB 02 02 84 05 00 08 00 08 00|”; offset:46; 

depth 27; sid:9999999; rev:1;) 

This rule has the following attributes: 

 It detects traffic flow from any IP, any source port to the controller destined for port 44818 

 It only alerts on established connected, as this attack relies on a TCP connection in order to get 

the Session and Connection IDs that are required for attack 

 It only alerts on a packet with the ACK and PSH flags set, as those are the flags set in the attack 

packet 

 It alerts if there is a content match at the beginning of the ENIP header (offset:0) if the first 4 

bytes are 0x0070 followed by 0x0031 which is the command to Send Unit Data followed by a 

header length of 49 bytes; AND 

 The content in the CIP Generic Class section (offset:46), including the Data field, are a match on 

content 

 SID, Msg, and Rev are all generic settings used for testing the alert 

 

Snort Rule –Round 1 Testing 

The lab systems, as shown in the Lab Setup section, were used to run the attack and get the controller 

into a fault state.  Snort was loaded with the above rule under local.rules and was listening to all traffic 

on the network and Sguil was used to examine the alerts received by Snort.  The rule successfully alerts 

each time the exploit is run against the system as shown in the screenshot below (note extensive testing 

of the rules here as they were built up over time): 

 

 

Figure 8. Alert added to local.rules 
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Figure 9. Sguil showing alerts (533 at this point) for alerts on the rule as described above in this section 

 

Snort was left in a listening mode while further “non-exploit” traffic was sent between the controller 

and RSMicroLogix application (i.e. connect, change mode to run/program, download new code, etc.).  

No false-positive alerts were witnessed. 
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Snort Rule –Round 2 

Keying in on the Data field, further examination of the values in this field may prove to be of interest in 

writing the Snort rule or creating a tighter version of it to further limit false positive alerts.  To test which 

bytes of the Data field data affect the exploit, that individual bytes in the Data filed were “fuzzed” byte-

by-byte and the exploit re-run to determine if the fault condition would still be induced by the attack.  

The table below indicates which bytes in the Data field, when changed, either fail to induce the fault or 

the attack operates as designed: 

Payload 2 - CIP generic class data generation section of the exploit 

Position Value 
Exploit remains functional after 

change 
Byte offset in packet 

from ENIP header 

1 x07 YES 52 

2 x4d YES 53 

3 x00 YES 54 

4 x3d YES 55 

5 x09 YES 56 

6 xa9 YES 57 

7 x0a YES 58 

8 x0f NO 59 

9 x00 YES 60 

10 x68 YES 61 

11 xdd YES 62 

12 xab NO 63 

13 x02 NO 64 

14 x02 NO 65 

15 x84 NO 66 

16 x05 NO 67 

17 x00 NO 68 

18 x08 NO 69 

19 x00 YES 70 

20 x08 YES 71 

21 x00 YES 72 

 

Table 5. Table outlining the success of the attack when specific bytes of the data in the CIP Data field are modified 

From the table above it appears that the byte values of more than half of the Data section appear to not 

affect the attack’s success.  The Snort alert rule was refined based on the information above and further 

tested. 
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The new Snort rule which was tested was as follows (note the sid was changed to determine when the 

“new” or refined rule was hit during testing): 

alert tcp any any -> 10.0.0.135/32 44818 (msg: “Metasploit Cybati Allen-Bradley MicroLogix Major 

Fault Error detected!”; flow:established; flags:AP; content: “|0F|”; offset:59; depth:1; content: “|AB 

02 02 84 05 00 08|”; offset:63; depth 7; sid:9999998; rev:1;) 

The rule above was added to local.rules, Snort restarted, and Sguil opened again.  The exploit was run 

once again and the new alert appeared as highlighted in the screenshot below. 

 

 

 

Figure 10. Sguil window with new alert added to local.rules and exploit run against the controller 
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Conclusion 

The rules as written in either case should function appropriately as neither rule alerted upon normal 

controller to application network traffic, and only alerted upon running the exploit and creating the 

logical fault condition on the controller.  Obviously the second rule is tighter as it only keys in on specific 

bytes in the Data field which cause the fault condition to occur.  If more time to devote to this work was 

available it would be recommended that the CIP Data field and the various byte elements be examined 

further.  While the elements of the CIP Data field which result in the setting of the S2:5/3 bit is known, 

the structure of this field is not known.  Research on this topic has not produced a succinct definition of 

the Data filed which could be applied to the attack being examined. 

Although, many of the documents which define ENIP and CIP were examined to determine what the 

values in the CIP Command Specific Data section were nothing conclusive was determined.  However,, it 

appears the byes in the Data field are related to the following table: 

 

If this is accurate, then the values we are keying in on in our Snort rules are: 

0x0F – CMD byte 

0xAB – FNC 

0x02 0x02 0x84 0x05 0x00 0x08 – PCCC CMD/FNC specific data 

One final note: research did turn up some proposed modifications to MicroLogix controller, specifically 

the 1200 and 1500 series controllers where the S2:5/3 bit will only be “clearable” through 

communication messages but not writable to mitigate the attack described in this submission.  These 

changes were slated for firmware updates released in March 2013. 

 


