# Snort Signatures for AB/ML Metasploit Major Fault Attack

**AUTHOR: DERON GRZETICH - DEPAUL UNIVERSITY** 

2013

# Snort Signatures for AB/ML Metasploit Major Fault Attack

# Objective

The objective of this work was to write alert signatures for Snort to detect the Metasploit Fault attack on the Allen-Bradley/Rockwell Automation MicroLogix 1400 series controllers. The first objective was to write a Snort IDS rule that would detect the malicious traffic generated by the exploit. The second objective was to write a rule that identifies only "approved traffic" and alerts on all other traffic by tightening the Snort rule to only data that puts the controller into a fault state.

# Approach

The approach to this work was to examine both the exploit in action through packet captures and analysis, as well as through a review of the Metasploit .rb file which dictates how the packets will be created and sent to the MicroLogix controller. After understanding how the attack functioned a Snort rule was written to detect traffic that matched the exploit traffic from a generic level. As the generic rule may also trigger false positives on legitimate traffic sent to the controller, in addition to the attack, the rule was refined. After refining the rule, the bytes in the CIP Generic Class section of the payload which resulted in a successful fault attack were determined and used to further refine the rule using offset and depth information.

# **Environment Setup**

For the purposes of this report, the environment was setup as follows:



# **Understanding the Exploit**

To better understand the exploit and its operation, the function of the exploit through examination of its usage in metsaploit was conducted. In addition, the ports and services that are "listening" or used by the controller were examined through port scanning, the effect of the exploit on the S2:5/3 bit was determined, and finally the attack was dissected through both packet capture and analysis and examination of the .rb file to match what was observed on the wire.

# Metasploit Examination

The exploit was loaded into Metasploit (located at /auxiliary/cybati/micrologix\_fault). The options for the attack were examined by running a "show options". It appears that the only option that needs to be set is the RHOST, as changing the port or attack type (as examined in the .rb file) modifies the attack in such a way that the exploit will not function as designed. The screenshot below shows the use and options of the attack:

| ~ ~ ×                                                | root@bt: ~                                                                       |                                                    |                                                                                           |                                                                  |
|------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| File Edit V                                          | /iew Terminal Help                                                               |                                                    |                                                                                           |                                                                  |
| =[<br>+=[<br>+=[<br>=[                               | metasploit v4.5.0<br>974 exploits - 51<br>261 payloads - 28<br>svn r15999 update | -dev [core<br>3 auxiliar<br>encoders<br>d 195 days | :4.5 api:1.0]<br>y - 159 post<br>- 8 nops<br>age (2012.10.22)                             |                                                                  |
| Warning: T<br>W<br>F                                 | his copy of the M<br>e recommend that<br>or information on<br>https://commun     | etasploit<br>you update<br>updating<br>ity.rapid7  | Framework was last u<br>the framework at le<br>your copy of Metaspl<br>.com/docs/DOC-1306 | pdated 195 days ago.<br>ast every other day.<br>oit, please see: |
| <u>msf</u> ><br><u>msf</u> > use<br><u>msf</u> auxil | auxiliary/cybati/<br>iary(micrologix_f                                           | micrologix<br>ault) > sh                           | fault<br>ow options                                                                       |                                                                  |
| Module opt                                           | ions (auxiliary/c                                                                | ybati/micr                                         | ologix_fault):                                                                            |                                                                  |
| Name                                                 | Current Setting                                                                  | Required                                           | Description                                                                               | 5                                                                |
| ATTACK<br>RHOST<br>RPORT                             | FAULT<br>127.0.0.1<br>44818                                                      | yes<br>yes<br>yes                                  | The attack to use.<br>The target address<br>The target port                               | Valid values: FAULT                                              |
| <u>msf</u> auxil                                     | iary(micrologix_f                                                                | ault) >                                            |                                                                                           |                                                                  |

Figure 1: Metasploit MicroLogix attack options

The following screenshot shows successful execution of the attack against the controller (note the connection and session IDs referred to in this document were not captured in this screenshot, this is to illustrate the attack in Metasploit only):



Figure 2: Metasploit MicroLogix attack execution

#### **Port Scanning**

To examine what other ports may be a used in this attack on the MicroLogix controllers a full nmap scan with options (-sT -n -v -p 1-65535) was run against the controller at 10.0.0.135. The results showed two open ports (80/TCP and 44818/TCP) and one closed port (2222/TCP). Port 80/TCP is used for the web interface to the controller, while 2222/TCP is shown as ENIP and 44818/TCP is an unknown service. It is likely that the 2222/TCP closed state is related to the fact that ENIP uses 2222/UDP for implicit messaging and 44818/TCP is used for explicit messaging.

#### Examining the S2:5/3 Bit

To see the effect of the exploit on the controller, and to prove that the S2 file's 5/3 bit is "set" as part of the exploit, a before and after view of the bit status (using the controller's web interface) was used. In the first screenshot below we see that the S2:5/3 bit is off and the controller is running normally without a fault indication.

| 🖉 1766-L32BWAA B/11.00 - Windows Internet Exp | plorer       |          | * *       | -      |        |    |    |   |   |   |     |               |            |         |          |                  | _ 0                | ×              |
|-----------------------------------------------|--------------|----------|-----------|--------|--------|----|----|---|---|---|-----|---------------|------------|---------|----------|------------------|--------------------|----------------|
|                                               |              |          | _         |        |        |    |    |   |   |   | -   | - 10          | × 🖸 E      | Bing    |          |                  |                    | <del>ب</del> 0 |
| 🙀 Favorites 🛛 🚔 💽 Suggested Sites 👻 🖉 V       | Veb Slice Ga | llery 👻  |           |        |        |    |    |   |   |   |     |               |            |         |          |                  |                    |                |
| 🏉 1766-L32BWAA B/11.00                        |              |          |           |        |        |    |    |   |   |   |     |               | - 🖾 -      | 🖃 🖶 ·   | • Page • | <u>S</u> afety ▼ | T <u>o</u> ols ▼ ( | 0-             |
| Allen-Bradley 1766-L32                        | 2BWA         | A B/     | 11.00     | )      |        |    |    |   |   |   |     |               |            |         |          |                  | Rockw              | ell            |
| Expand Minimize                               | Data View    | s New    | Data View |        |        |    |    |   |   |   |     |               |            |         |          | Au               | oman               | on             |
| DHome                                         | Doto Her     |          | boto rich | 1      |        |    |    |   |   |   |     |               |            |         |          |                  |                    | 16             |
| Data Views                                    | 5            | 2 [State | us] Disp  | lay As | Binary | •  |    |   |   |   |     |               |            |         | Update   | Ba               | ick                | -              |
| New Data View                                 | Offset       | 15       | 14        | 13     | 12     | 11 | 10 | 9 | 8 | 7 | 6   | 5             | 4          | 3       | 2        | 1                | 0                  | 1              |
| User Provided Pages                           | S2:0         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| User #2                                       | 52:1         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 1             | 1          | 0       | 0        | 0                | 1                  |                |
| User #3                                       | 52:2         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| User #5                                       | 52:3         | 0        | 0         | 0      | 0      | 1  | 0  | 1 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| User #6                                       | 52:4         | 0        | 0         | 1      | o      | 1  | 1  | 1 | 0 | 1 | 1   | 0             | o          | 1       | 1        | 1                | 0                  |                |
| User #8                                       | \$2:5        | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| Diagnostics                                   | S2:6         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| Diagnostic Overview                           | S2:7         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| Network Status                                | 52:8         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| Administrative Settings                       | S2:9         | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| Server Settings                               | 52:10        | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | o          | 0       | 0        | 0                | 0                  |                |
| C) User Management                            | S2:11        | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
|                                               | 52:12        | 0        | o         | 0      | 0      | 0  | o  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
| <                                             | 52:13        | 0        | 0         | 0      | 0      | 0  | 0  | 0 | 0 | 0 | 0   | 0             | 0          | 0       | 0        | 0                | 0                  |                |
|                                               |              |          |           |        |        |    |    |   |   |   | 😜 I | nternet   Pro | otected Mo | de: Off |          | -<br>            | <b>a</b> 100%      | •              |

Figure 3: Status of the S2:5/3 bit prior to exploit being run

Next, the exploit was run against the controller which induced the fault condition. The interface was again examined for the presence of the S2:5/3 bit being set. In the screenshot below we can see that the bit is now set and the controller must be manually reset to "reset" the S2:5/3 bit.

| A 1766-L32BWAA B/11.00 - Windows Internet Ex | plorer        |           |          |         |        |    |    |   |   |   |      |               |             |         |        |                  | _ 0                | x         |
|----------------------------------------------|---------------|-----------|----------|---------|--------|----|----|---|---|---|------|---------------|-------------|---------|--------|------------------|--------------------|-----------|
|                                              |               |           | * *      | 1.0     |        |    |    |   |   |   | •    |               | 🗙 📴 Ві      | ing     |        |                  | ,                  | o •       |
| 🙀 Favorites 🛛 🍰 🔽 Suggested Sites 👻 🔊 🛛      | Web Slice Gal | lery 🕶    |          |         |        |    |    |   |   |   |      |               |             |         |        |                  |                    |           |
|                                              |               |           |          |         |        |    |    |   |   |   |      |               | • 🔊 •       | -       |        | <u>S</u> afety ▼ | T <u>o</u> ols 🕶 👔 | 0-        |
| Allen-Bradley 1766-L32                       | 2BWA          | A B/1     | 1.00     | )       |        |    |    |   |   |   |      |               |             |         |        | Aut              | tockwe<br>omatie   | ell<br>on |
| Expand Minimize                              | Data View     | s New D   | ata View |         |        |    |    |   |   |   |      |               |             |         |        |                  |                    |           |
| Home Data Views Data Views Data Views        | s             | 2 [Status | a] Disp  | olay As | Binary | •  |    |   |   |   |      |               |             |         | Update | ) 🛛 Ва           | ck                 | ш         |
| New Data View                                | Offset        | 15        | 14       | 13      | 12     | 11 | 10 | 9 | 8 | 7 | 6    | 5             | 4           | 3       | 2      | 1                | 0                  |           |
| User =1                                      | 52:0          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  | μ         |
| User #2                                      | 52:1          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 1             | 1           | 0       | 0      | 0                | 1                  |           |
| User #4                                      | 52:2          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| User #5                                      | 52:3          | 0         | 0        | 0       | 0      | 1  | 0  | 1 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| User #7                                      | 52:4          | 0         | 0        | 1       | 0      | 1  | 1  | 1 | 0 | 1 | 1    | 0             | 0           | 1       | 1      | 1                | 0                  |           |
| User #8                                      | \$2:5         | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 1       | 0      | 0                | 0                  |           |
| Diagnostics                                  | S2:6          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| Network Settings                             | S2:7          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| Network Status                               | 52:8          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| Administrative Settings                      | 52:9          | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| User Management                              | 52:10         | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
|                                              | S2:11         | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
|                                              | S2:12         | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  |           |
| < F                                          | 52:13         | 0         | 0        | 0       | 0      | 0  | 0  | 0 | 0 | 0 | 0    | 0             | 0           | 0       | 0      | 0                | 0                  | -         |
|                                              |               |           |          |         |        |    |    |   |   |   | 😜 Ir | nternet   Pro | otected Moo | le: Off |        | - 10             | <b>a</b> 100%      | •         |

Figure 4: Status of the S2:5/3 bit post exploitation

### Examining the Packets

#### Wireshark

To dissect how the attack operates Wireshark was used to capture packets on the network and the results filtered to examine packets sent between Metasploit and the controller as part of the attack. The packets, as show in the screenshot below, have the following characteristics:

The attack requires a total of 12 packets, in order the packets are:

- Packets 1-3: The TCP connection setup (SYN-SYN/ACK-ACK)
- o Packets 4-6: Register an ENIP session to capture the ENIP Session ID
- Packets 7-8: Generate and capture the ENIP Connection ID
- Packet 9: Forge packet and send with CIP data which induces the fault
- Packets 10-12: Close the TCP connection (ACK-FIN/ACK/ACK-RST)

| 🖊 AB         | ML Metasploit At                     | tack - Packet Cap 1.p          | cap - Wireshark                           |                                |                                                                                          |
|--------------|--------------------------------------|--------------------------------|-------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|
| <u>F</u> ile | <u>E</u> dit <u>V</u> iew <u>G</u> o | <u>Capture</u> <u>A</u> nalyze | <u>Statistics</u> Telephony <u>T</u> ools | <u>H</u> elp                   |                                                                                          |
|              |                                      | 🖻 🖬 🗶 🤗                        | ≗   °, ⇔ ⇒ ⇒ 7                            |                                | Q, Q, Q, [7]   ₩ 12 🥵 %   13                                                             |
| Filter:      |                                      |                                |                                           | <ul> <li>Expression</li> </ul> | . Clear Apply                                                                            |
| No.          | Time                                 | Source                         | Destination                               | Protocol                       | Info                                                                                     |
|              | 1 0.000000                           | 10.0.0.130                     | 10.0.0.135                                | ТСР                            | 53436 > EtherNet/IP-2 [SYN] Seq=1340407457 Win=14600 Len=0 MSS=1460 SACK_PERM=1 TSV=6995 |
|              | 2 0.005585                           | 10.0.0.135                     | 10.0.0.130                                | ТСР                            | EtherNet/IP-2 > 53436 [SYN, ACK] Seq=813180826 Ack=1340407458 win=2000 Len=0 MSS=1478    |
|              | 3 0.005650                           | 10.0.0.130                     | 10.0.0.135                                | TCP                            | 53436 > EtherNet/IP-2 [ACK] Seq=1340407458 Ack=813180827 Win=14600 Len=0                 |
|              | 4 0.008346                           | 10.0.0.130                     | 10.0.135                                  | ENIP                           | Register Session (Req), Session: 0x00000000                                              |
|              | 5 0.013086                           | 10.0.0.135                     | 10.0.130                                  | ENIP                           | Register Session (Rsp), Session: 0x73E5CCAA                                              |
|              | 6 0.013099                           | 10.0.0.130                     | 10.0.0.135                                | TCP                            | 53436 > EtherNet/IP-2 [ACK] Seq=1340407486 Ack=813180855 Win=14600 Len=0                 |
|              | 7 0.014230                           | 10.0.0.130                     | 10.0.0.135                                | CIP CM                         | Forward Open                                                                             |
|              | 8 0.023108                           | 10.0.0.135                     | 10.0.130                                  | CIP CM                         | Success                                                                                  |
|              | 9 0.023767                           | 10.0.0.130                     | 10.0.0.135                                | CIP                            | Unknown Service (0x4b)                                                                   |
|              | 10 0.024027                          | 10.0.0.130                     | 10.0.0.135                                | ТСР                            | 53436 > EtherNet/IP-2 [FIN, ACK] Seq=1340407645 Ack=813180925 Win=14600 Len=0            |
|              | 11 0.028079                          | 10.0.0.135                     | 10.0.0.130                                | TCP                            | EtherNet/IP-2 > 53436 [ACK] Seq=813180925 Ack=1340407646 win=2000 Len=0                  |
|              | 12 0.030347                          | 10.0.0.135                     | 10.0.0.130                                | ТСР                            | EtherNet/IP-2 > 53436 [RST, ACK] Seq=813180925 Ack=1340407646 Win=2000 Len=0             |

Figure 5: Wireshark capture of the exploit traffic between Metasploit and the controller

It appears that the forged packet (Packet 9) requires both a session and connection ID to succeed, although these connections do not require authentication prior to being accepted and the attacker is able to send the forged packet to the controller with minimal information being required on their part.

#### Packet and .rb Code Analysis

To further dissect the packets the options and data included with each packet were examined, including ENIP and CIP options, to evaluate how the attack operates. The tables below show the opening of the TCP connection, Session registration and capture of the Session ID, utilizing the Session ID to capture the Connection ID, the attack, and the TCP connection close. In addition, a review of the associated .rb file sections is included where necessary.

The TCP Connection open utilizes a standard open procedure:

|               | IP Header       |                 | TCP Header |          |          |
|---------------|-----------------|-----------------|------------|----------|----------|
| Packet number | Src IP          | Dst IP          | TCP Flags  | Src port | Dst Port |
| 1             | Metasploit      | Micrologix 1400 | S          | 53436    | 44818    |
| 2             | Micrologix 1400 | Metasploit      | SA         | 44818    | 53436    |
| 3             | Metasploit      | Micrologix 1400 | A          | 53436    | 44818    |

#### **1. TCP Connection Open**

Table 1: The TCP connection open from the attack

(note IP's have been removed and replaced with system monikers)

The TCP open is simply part of the *sock.put(packet)* requirement that a TCP session be established prior to sending the forged packets. The source port is chosen randomly from ephemeral ports. Although, after several runs of the attack and analysis of the chosen source port it appears that ports above 50,000 are used. The destination port is set by the exploit through the RPORT setting and the target is set by RHOST.

In terms of items to key in on to create a Snort signature we have:

- The source port will be random
- The destination port is that of the ENIP/CIP protocol which is 44818/TCP

Next, the exploit registers an ENIP session with the controller on 44818/TCP in order to generate a Session ID. This Session ID will be captured by the module and used in the next series of packets to capture the Connection ID which is required by the final attack packet. The truncated table below shows some of the options as set by the exploit:

|        | IP Header       |                 | TCP Heade    | er          |             | ENIP                              | ENIP Header                   |                       |
|--------|-----------------|-----------------|--------------|-------------|-------------|-----------------------------------|-------------------------------|-----------------------|
| Packet | Src IP          | Dst IP          | TCP<br>Flags | Src<br>port | Dst<br>Port | Session                           | Command                       | Session               |
|        |                 |                 |              | P           |             |                                   |                               |                       |
|        |                 |                 |              |             |             | 0x00000000<br>Register            | 0x0065<br>Register            | 0×0000000             |
| 4      | Metasploit      | Micrologix 1400 | AP           | 53436       | 44818       | Session                           | Session                       | Success               |
| 5      | Micrologix 1400 | Metasploit      | AP           | 44818       | 53436       | 0x73E5CCAA<br>Register<br>Session | 0x0065<br>Register<br>Session | 0x00000000<br>Success |
| 6      | Metasploit      | Micrologix 1400 | A            | 53436       | 44818       | NA                                | NA                            | NA                    |

# 2. Register and Capture Session ID

Table 2: Session ID request and capture packets

In terms of actual code in the exploit module used to generate the packet above, we examine the following section of code called *reqsession*:

def reqsession

packet = ""
packet += "\x65\x00" # ENCAP\_CMD\_REGISTERSESSION (2 bytes)
packet += "\x04\x00" # encap\_length (2 bytes)
packet += "\x00\x00\x00\x00" # session identifier (4 bytes)
packet += "\x00\x00\x00\x00\x00" # status code (4 bytes)
packet += "\x00\x00\x00\x00\x00\x00\x00\x00" # context information (8 bytes)
packet += "\x00\x00\x00\x00\x00" # options flags (4 bytes)
packet += "\x01\x00" # proto (2 bytes)
packet += "\x00\x00" # flags (2 bytes)
begin
sock.put(packet)
response = sock.get\_once(-1,8)
session\_id = response[4..8].unpack("N")[0] # parse allocated session id
print\_status("Got session id: 0x"+session\_id.to\_s(16))

TRUNCATED...

The code above generates the portion of the packet used to generate a Session ID through the 0x0065 (Register Session) value in the command field of the ENIP header. The variable "packet" is built up with other options such as a session identified (0x0), status code (0x0 Success), and other options required by the ENIP header. Again, full packet analysis is included as an attachment. The module then sends the

packet using *sock.put(packet)* to the controller and evaluates the response. The *response* = *sock.get\_once(-1,8)* receives the packet back from the controller, and the "session\_id" variable is populated with the parsed response packet which contains the Session ID. If successful it prints the Session ID to the console, and the truncated section handles errors and error messages.

In terms of items to key in on to create a Snort signature we have:

- The attacking system sends a 0x0065 ENIP command to the controller to elicit a session ID response
- These packets are immediately preceded by the TCP connection setup
- The Session ID changes upon each subsequent connection and is of little value
- Some of these fields may cause false positives in the signature and should be ignored. The Session ID capture mechanism does not contain the actual attack packet containing the CIP data which sets the S2:5/3 fault bit to on

Once the Session ID is obtained, the attack can connect to the controller to obtain the required Connection ID. The next series of packets elicit a response from the controller which allows the capture the Connection ID (note, this is heavily truncated due to the sheer number of fields in ENIP and CIP headers):

|        | IP Header          |                    | ENIP                          | ENIP Header            |                   | CIP                                      |                                 | CIP Connection<br>Manager |
|--------|--------------------|--------------------|-------------------------------|------------------------|-------------------|------------------------------------------|---------------------------------|---------------------------|
| Packet | Src IP             | Dst IP             | Session                       | Command                | Session<br>Handle | Service                                  | Request<br>Path                 | 0->T, T->0                |
| 7      | Metasploit         | Micrologix<br>1400 | 0x73E5CCAA<br>Send RR<br>Data | 0x006f<br>Send RR Data | 0x73E5CCAA        | Unknown<br>Service<br>0x54<br>(Request)  | Connection<br>Manager<br>(0x01) | 0x80000015<br>0x80FE0014  |
| 8      | Micrologix<br>1400 | Metasploit         | 0x73E5CCAA<br>Send RR<br>Data | 0x006f<br>Send RR Data | 0x73E5CCAA        | Unknown<br>Service<br>0x54<br>(Response) | Connection<br>Manager<br>(0x01) | 0xAACD2C6F<br>0x80FE0014  |

# 3. Using Session ID, Capture Connection ID

Table 3: Using Session ID, request Connection ID and capture

The section of code in the module which creates these packets and captures the Connection ID are in the section called *reqconnection(sessionid)*. As we can see, the *sessionid* variable is passed to this function as it is required to build a packet which will elicit the response required.

The code (truncated) is as follows:

def reqconnection(sessionid)

packet = ""

packet += "\x6f\x00" # SEND\_RR\_DATA (2 bytes)

print\_status("Got connection id: 0x"+connection\_id.to\_s(16))

An analysis of the code shows that the packet is a Send RR Data request in the command field of the ENIP header. The controller responds with a similar message that contains the 0->T network connection ID. The response packet is parsed, looking at bytes 44-48, offset from the start of the ENIP header which is directly after the TCP header we will find the Connection ID which will be stored in the *connection\_id* variable to be used in the attack packet generation. In the example the Connection ID was 0xAACD2C6F. Note that the packet hex in Wireshark that this value is stored in little Endian.

In terms of items to key in on to create a Snort signature we have:

- The static T->0 value as set 0x80FE0014 (note that in packet creation this is backwards due to the Endian-ness of the field)
- The Session ID and controller Connection ID's are both variable and subject to change and are therefore of limited value in a signature
- These packets are immediately preceded by the ENIP registration packets

Once the attacker has the Session and Connection IDs it is possible to forge the attack pack which sets the S2:5/3 bit and implements the fault error on the controller. The attack packet appears as follows (truncated):

#### 4. Send Attack

|        | IP Header  |            | ENIP       | ENIP Header |        |                  | CIP       | CIP Class Generic       |
|--------|------------|------------|------------|-------------|--------|------------------|-----------|-------------------------|
| Packet | Src IP     | Dst IP     | Session    | Command     | Length | Connection<br>ID | Service   | Data                    |
|        |            |            |            |             |        |                  |           |                         |
|        |            |            |            |             |        |                  | Unknown   |                         |
|        |            |            | 0x73E5CCAA | 0x0070      |        |                  | Service   | 07 4d 00 3d 09 a9 0a    |
|        |            | Micrologix | Send Unit  | Send Unit   |        |                  | 0x4b      | 0f 00 68 dd ab 02 02 84 |
| 9      | Metasploit | 1400       | Data       | Data        | 49     | 0xAACD2C6F       | (Request) | 05 00 08 00 08 00       |

Table 4: Attack packet attributes

The code that generates this relies upon building a packet in two part (*payload1* and *payload2*) while also injecting the Session and Connection ID gathered in packets 5 and 8. The code that generates the attack packet is as follows:

def forgepacket(sessionid, connectionid, payload1, payload2)

packet = ""
packet = "\x70\x00" # command: SEND\_UNIT\_DATA (4 bytes)
packet += "\x31\x00" # length (4 bytes)
packet += [sessionid].pack("N") # session identifier (4 bytes) \*\*our session ID was 0x73E5CCAA in this case
packet += payload1 #payload1 part
packet += [connectionid].pack("N") # connection identifier (4 bytes)
\*\*our session ID was 0x73E5CCAA in this case
packet += payload2 #payload2 part
begin

sock.put(packet)

....

This code combines all of the elements into the final attack packet. Payload 1 is somewhat uninteresting in its options as it appears to simply include necessary data elements and fields as required by the protocol. Payload2 presents a more interesting set of data, including one which is not seen in the packets until now. The truncated code we examine next is as follows:

payload2 += "\xb1\x00" # connected data item payload2 += "\x1d\x00" # length payload2 += "\x7d\x14" # connection id payload2 += "\x4b" # service payload2 += "\x02" # request path size payload2 += "\x20\x67\x24\x01" # request path payload2 += "\x07\x4d\x00\x3d\x09\xa9\x0a\x0f\x00\x68" # cip class generic payload2 += "\xdd\xab\x02\x02\x84\x05\x00\x08\x00\x08\x00" # cip class generic

The exploit appears to generate data which is located in the Data field of the CIP Generic Class section of the packet which will be sent to the controller. To examine other "normal" network traffic between the controller and the RSMicroLogix application, data during normal run operations as well as download operations was captured to examine this contents of the Data field using Wireshark. The following screenshot depicts legitimate Run operations when connected to the RSMicroLogix application:

|        | ait ENIE     | traffic ( | can no | an - Wire | schark   | _          |                |                            | _      | -         |         |            |           |              |
|--------|--------------|-----------|--------|-----------|----------|------------|----------------|----------------------------|--------|-----------|---------|------------|-----------|--------------|
| File   | Edit         | View      | Go     | anture    | Analyze  | Statistics | Teleph         | ony Tools                  | Help   |           |         |            |           |              |
| The    | Luit         | VIEW      | 00 1   | aprure    | Analyze  | Junistics  | reiepii        | 011 <u>y</u> <u>1</u> 001s | Tielb  |           |         |            |           |              |
|        |              |           |        |           | * 2      |            | ( <del>(</del> | 🗞 🔄 🖗                      | ₽      |           | ⊕ Q     | 0          | ¥ 🗹 🍢     | *            |
| Filter | :            |           |        |           |          |            |                |                            | ▼ E    | xpression | Clear A | Apply      |           |              |
| No.    | Ti           | me        | :      | Source    |          |            | Destinatio     | n                          | 1      | Protocol  |         | Info       |           |              |
|        | 363 4.       | .15061    | 19     | 10.0.0    | .125     |            | 10.0.0         | .135                       |        | CIP       |         | Unknown    | Service   | (0x4b)       |
|        | 364 4.       | 15473     | 30     | 10.0.0    | .135     |            | 10.0.0         | .125                       | (      | CIP       |         | Success    |           |              |
|        | 365 4.       | .17865    | 55     | 10.0.0    | .125     |            | 10.0.0         | .135                       |        | CIP       |         | Unknown    | Service   | (0x4b)       |
|        | 366 4.       | .18465    | 58 :   | 10.0.0    | .135     |            | 10.0.0         | .125                       | (      | CIP       |         | Success    |           |              |
|        | 367 4.       | .21865    | 57     | 10.0.0    | .125     |            | 10.0.0         | .135                       | (      | CIP       |         | Unknown    | Service   | (0x4b)       |
|        | 368 4.       | . 22474   | 40     | 10.0.0    | .135     |            | 10.0.0         | .125                       | (      | CIP       |         | Success    |           |              |
|        | 369 4.       | . 24006   | 64     | 10.0.0    | .125     |            | 10.0.0         | .135                       |        | CIP       |         | Unknown    | Service   | (0x4b)       |
|        | 370 4.       | . 24481   | 19     | 10.0.0    | .135     |            | 10.0.0         | .125                       |        | CIP       |         | Success    |           |              |
|        | 371 4.       | . 27857   | 72     | 10.0.0    | .125     |            | 10.0.0         | .135                       |        | CIP       |         | Unknown    | Service   | (0x4b)       |
|        | 372 4.       | .28466    | 61     | 10.0.0    | .135     |            | 10.0.0         | .125                       |        | CIP       |         | Success    |           |              |
|        | 3734.        | . 31063   | 36     | 10.0.0    | .125     |            | 10.0.0         | .135                       |        | CIP       |         | Unknown    | Service   | (0x4b)       |
|        | 374 4.       | . 31479   | 97     | 10.0.0    | .135     |            | 10.0.0         | .125                       |        | CIP       |         | Success    |           |              |
| 4      | 275 /        | 34263     | 28     | 10 0 0    | 125      |            | 10 0 0         | 125                        |        | стр       |         | Unknown    | Service   | (0v4h)       |
| ۹ 📃    |              |           |        |           |          |            |                |                            |        |           |         |            |           |              |
| ± Fr   | ame 3        | 363: 1    | L12 b  | oytes o   | on wire  | (896 b     | its),          | 112 byte                   | s capt | tured (8  | 96 bits | 5)         |           |              |
| + E1   | therne       | et II,    | , Sro  | :: 00:7   | 3:63:6   | L:64:61    | (00:7          | 3:63:61:                   | 64:61) | ), Dst:   | Rockwe  | 11_a4:01:9 | 96 (00:1d | 1:9c:a4:01:9 |
| + Ir   | nterne       | et Pro    | otoco  | ol, sro   | :: 10.0  | 0.125      | (10.0.         | 0.125),                    | Dst: 1 | 10.0.0.1  | 35 (10  | .0.0.135)  |           |              |
| ± Tr   | ansmi        | ission    | n Cor  | itrol F   | rotoco   | l, Src     | Port:          | 49591 (4                   | 9591)  | , Dst Po  | rt: Eth | herNet/IP- | 2 (44818  | ), Seq: 592  |
| ± Et   | therNe       | et/IP     | (Ind   | lustria   | al Prote | ocol),     | Sessio         | n: 0x2D5                   | 5107F  | , Send R  | R Data  |            |           |              |
| E CO   | ommon        | Indus     | stria  | al Prot   | :0001    |            |                |                            |        |           |         |            |           |              |
| +      | Servi        | ice: U    | Jnkno  | wn Ser    | vice (   | 0x4b) (    | Reques         | t)                         |        |           |         |            |           |              |
|        | Reque        | est Pa    | ath S  | 51ze: 2   | (word    | 5)         |                |                            |        |           |         |            |           |              |
| -      | Reque        | est Pa    | ath:   | Class:    | 0x6/,    | Instan     | ce: 0x         | 01                         |        |           |         |            |           |              |
|        | ■ 8-E        | Bit Lo    | ogica  | al Clas   | s Segm   | ent (Ox    | 20)            |                            |        |           |         |            |           |              |
|        |              | lass:     | : Unk  | (nown (   | (0x67)   |            |                |                            |        |           |         |            |           |              |
|        | <b>⊟</b> 8-E | 31t Lo    | ogica  | I Inst    | ance S   | egment     | (0x24)         |                            |        |           |         |            |           |              |
|        | 1            | Instar    | nce:   | 0x01      |          |            |                |                            |        |           |         |            |           |              |
| E C1   |              | ass Ge    | eneri  | c         |          |            |                |                            |        |           |         |            |           |              |
| -      | Comma        | and Sp    | pecif  | ic Dat    | a        |            |                |                            |        |           |         |            |           |              |
|        | Dat          | ta: 07    | 74000  | DA0363    | 32006000 | 200003     |                |                            |        |           |         |            |           |              |

Figure 6: Wireshark capture between controller and RSMicroLogix application

In addition, a packet capture of a download of new code to the controller was examined which is depicted in the screenshot below:

| 10.0.0.135                                                                                           | 10.0.0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.0.0.150                                                                                           | 10.0.0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51373 > E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.0.0.150                                                                                           | 10.0.0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unknown S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.0.0.135                                                                                           | 10.0.0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.0.0.150                                                                                           | 10.0.0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unknown S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.0.0.135                                                                                           | 10.0.0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10.0.0.150                                                                                           | 10.0.0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unknown S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.0.0.135                                                                                           | 10.0.0.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Success                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                      | 40.0.435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| : 00:73:63:61:<br>00:73:63:61:64<br>                                                                 | <pre>ba:61 (00:73:63:61:64<br/>:61 (00:73:63:61:64:(<br/> = IG bit: Ind'<br/> = LG bit: Glot<br/>(00:1d:9c:a4:01:96<br/> = IG bit: Ind'<br/> = LG bit: Glot<br/>0.0.135 (10.0.0.135)<br/>ol, Src Port: EtherNet<br/>tocol), Session: 0x9</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>ital) fill fill fill fill fill fill fill fi</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess (unicast)<br>address (factory<br>ess (unicast)<br>address (factory<br>0.150 (10.0.0.150)<br>L8), Dst Port: 513<br>d Unit Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Send Unit Data<br>9<br>andle: 0x95262<br>uccess (0x0000<br>ntext: 0000000<br>0x0000000<br>cific Data | (0x0070)<br>c31<br>0000)<br>000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                      | 10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.150<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.135<br>10.0.0.0.135<br>10.0.0.135<br>10.0.0.0.135<br>10.0.0.0.135<br>10.0.0.0.135<br>10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. | 10.0.0.150 10.0.0.135<br>10.0.0.150 10.0.0.135<br>10.0.0.150 10.0.0.135<br>10.0.0.150 10.0.0.150<br>10.0.0.150 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.0.135 10.0.0.150<br>10.0.135 10.0.0.150<br>10.0.135 10.0.0.150<br>10.0.135 10.0.0.150<br>10.0.135 10.0.0.150<br>10.0.135 10.0.0.150<br>10.0.135 10.0.0.150<br>10.0.13616164:61 (00:73:63:61:64<br>10:73:63:61:64:61 (00:73:63:61:64<br>10:73:63:61:64:61 (00:73:63:61:64<br>10:073:63:61:64:61 (00:73:60 | 10.0.0.150       10.0.0.135       TCP         10.0.0.150       10.0.0.135       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.150       10.0.0.135       CIP         10.0.0.150       10.0.0.135       CIP         10.0.0.150       10.0.0.135       CIP         10.0.0.150       10.0.0.135       CIP         10.0.0.135       10.0.0.135       CIP         10.0.0.135       10.0.0.135       CIP         10.0.0.135       10.0.0.135       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.135       10.0.0.135       CIP         10.0.0.135       10.0.0.135       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.135       10.0.0.150       CIP         10.0.0.135       10.0.0.136       CIO:73:63:61:64:61         10.73:63:61:64:61       (00:73:63:61:64:61)          10.0.0.139       Col:14:9C:a4:01:96       Rockwell_a4:01:96         Rockwell_a4:01:96       (00:1d:9c:a4:01:96)      < |

Figure 7: Wireshark capture between controller and RSMicroLogix application w/download

Also worth noting is the fact that the Data field length in normal traffic between the controller and application is variable, ranging from 13 to 36 bytes in length. The attack packet uses a static length of 21 bytes due to the construction of the Data field section by the exploit.

In terms of items to key in on to create a Snort signature we have:

- The attack packet contains a concatenation of payload1, payload2, the Session ID, and the Connection ID
- The Data field under the CIP Class Generic section appears to hold the data which flips the S2:5/3 bit to on, causing the logical fault condition on the controller
- The Data field is static in this attack at 21 bytes in length as well as in content which is known by examining either the packet capture or the exploit code itself
- The attack packet has a ENIP header length of 49 bytes as it is forged by Metasploit

# Snort Rule – Round 1

Based on the information gathered to this point it is possible to write a generic Snort rule which will alert on the attack traffic. Although it is a better practice to write the rule to catch the vulnerability, and not the exploit, given that this attack is not "interactive" in the normal sense we are stuck writing the rule to catch the exploit on the wire.

Here is the Snort rule which detects the flow, 44818/TCP port usage (note: it is set to alert on the IP of the controller in the lab only), the flags in the TCP header, and the content utilizing offset and depth:

alert tcp any any -> 10.0.0.135/32 44818 (msg: "Metasploit Cybati Allen-Bradley MicroLogix Major Fault Error detected!"; flow:established; flags:AP; content: "|70 00 31 00|"; offset:0; depth:4; content: "|4B 02 20 67 24 01 07 4D 00 3D 09 A9 0A 0F 00 68 DD AB 02 02 84 05 00 08 00 08 00 |"; offset:46; depth 27; sid:9999999; rev:1;)

This rule has the following attributes:

- It detects traffic flow from any IP, any source port to the controller destined for port 44818
- It only alerts on established connected, as this attack relies on a TCP connection in order to get the Session and Connection IDs that are required for attack
- It only alerts on a packet with the ACK and PSH flags set, as those are the flags set in the attack packet
- It alerts if there is a content match at the beginning of the ENIP header (offset:0) if the first 4 bytes are 0x0070 followed by 0x0031 which is the command to Send Unit Data followed by a header length of 49 bytes; AND
- The content in the CIP Generic Class section (offset:46), including the Data field, are a match on content
- SID, Msg, and Rev are all generic settings used for testing the alert

#### Snort Rule - Round 1 Testing

The lab systems, as shown in the Lab Setup section, were used to run the attack and get the controller into a fault state. Snort was loaded with the above rule under local.rules and was listening to all traffic on the network and Sguil was used to examine the alerts received by Snort. The rule successfully alerts each time the exploit is run against the system as shown in the screenshot below (note extensive testing of the rules here as they were built up over time):

|              |              |                |         |     |              |      | local.rules |            |           |                | <b>•</b> – | • × |
|--------------|--------------|----------------|---------|-----|--------------|------|-------------|------------|-----------|----------------|------------|-----|
| <u>F</u> ile | <u>E</u> dit | <u>S</u> earch | Optio   | ns  | <u>H</u> elp |      |             |            |           |                |            |     |
|              |              | W              | arning, | you | are u        | sing | the root ac | count, you | ı may har | m your system. |            |     |
| alert        | t tc         | p any          | any     | ->  | 10.          | 0.0  | . 135/32    | 44818      | (msg:     | "Metasploit    | Cybat      | i / |
|              |              |                |         |     |              |      |             |            |           |                |            |     |
|              |              |                |         |     |              |      |             |            |           |                |            |     |

Figure 8. Alert added to local.rules

|                 |                                                                          |             |                        |         | S          | GUIL-    | 0.8.0            | - Co             | nnect            | ed To l                 | ocalhos                     | st                        |                                          |                      |                  |            |           | Ŷ             | - 8         | ×         |
|-----------------|--------------------------------------------------------------------------|-------------|------------------------|---------|------------|----------|------------------|------------------|------------------|-------------------------|-----------------------------|---------------------------|------------------------------------------|----------------------|------------------|------------|-----------|---------------|-------------|-----------|
| <u>F</u> ile    | Query                                                                    | <u>R</u> ep | orts Sour              | nd: Off | Serv       | erNam    | e: loc           | alhos            | t Use            | erName                  | student                     | Userl                     | D: 2                                     |                      |                  | 201        | 3-05-     | 18 16:0       | )9:29 G     | МТ        |
| Re              | ealTime B                                                                | Event       | s Escalate             | d Even  | ts         |          |                  |                  |                  |                         |                             |                           |                                          |                      |                  |            |           |               |             |           |
| s               |                                                                          | T           | Sensor                 | Ale     | ert ID     | 2        | Da               | ate/Tir          | ne<br>e:E4:0     | Sro                     | IP                          |                           | SPort                                    | D                    | st IP            | 20         |           |               | Port        |           |
| R               | T                                                                        | 1           | student-o              | :       | 9.1<br>9.2 | 20       | 013-05           | 5-17 0           | 6:54:0           | is 10.<br>IS 10.        | 0.10.1                      |                           | 52301                                    | 10                   | ).0.0.<br>).0.1( | 30<br>0.2  |           | 4             | 45          |           |
| R               | T                                                                        | 4           | student-o<br>student-o | 1       | 9.3<br>8.1 | 20       | 013-05<br>013-05 | 5-17 0<br>5-18 0 | 7:06:5<br>1:31:3 | 3 10.<br>7 10.          | 0.0.30                      |                           | 52315<br>49902                           | 10                   | ).0.1(<br>).0.1( | 0.2<br>0.2 |           | 8             | 8<br>3      |           |
| R               | T 5                                                                      | 33          | student-o              | 1       | 8.8        | 20       | 013-05           | 5-18 0           | 1:32:2           | 3 10.                   | 0.0.130                     |                           | 51196                                    | 10                   | 0.0.0.           | 135        |           | 4             | 4818        |           |
|                 |                                                                          |             |                        |         |            |          |                  |                  |                  |                         |                             |                           |                                          |                      |                  |            |           |               |             |           |
|                 | P Resol                                                                  | ution       | Agent St               | tatus   | Snor       | t Statis | tics             |                  | show i           | Packet                  | Data $\checkmark$           | Snow P                    | Kule<br>(1/1919 (m                       | nea: '               | Moto             | enlo       | it Cv     | hati          |             |           |
| Sro             | Reverse<br>: IP:                                                         | DNS         | S 🔽 Enable             | Extern  | al DN      | 15       |                  | aren             | IP               | So<br>10.0.0.           | urce IP<br>130              | 10.0                      | Dest IP                                  | isy.                 | Ver<br>4         | HL<br>5    | TOS<br>0  | len<br>40     | ID<br>45583 | lag       |
| Sro<br>Ds<br>Ds | Src Name:<br>Dst IP:<br>Dst Name:<br>Whois Query:   None  Src IP  Dst IP |             |                        |         |            |          |                  | т                | СР               | Source<br>Port<br>51196 | Dest F<br>Port 1<br>44818 . | U A<br>R R R C<br>1 0 G K | ( P R S P<br>S S Y I<br>( H T N N<br>( ) | F<br>I<br>N<br>X 357 | Seq :            | #<br>9108  | A<br>8293 | ck #<br>71225 | Offse       | t te<br>C |
|                 | iois Quei                                                                | y           | None                   | SICIP   |            | JSUIP    |                  | D                | ATA              | None.                   |                             |                           |                                          |                      |                  |            |           |               |             | Ę         |
|                 | Menu                                                                     |             |                        |         |            | [Ter     | mina             | al - ro          | ot@              |                         | [SGUIL-                     | -0.8.0 -                  | Co                                       |                      | GUI              | 1-0.1      | B.0 -     | Con           |             | െ         |

Figure 9. Sguil showing alerts (533 at this point) for alerts on the rule as described above in this section

Snort was left in a listening mode while further "non-exploit" traffic was sent between the controller and RSMicroLogix application (i.e. connect, change mode to run/program, download new code, etc.). No false-positive alerts were witnessed.

#### Snort Rule – Round 2

Keying in on the Data field, further examination of the values in this field may prove to be of interest in writing the Snort rule or creating a tighter version of it to further limit false positive alerts. To test which bytes of the Data field data affect the exploit, that individual bytes in the Data field were "fuzzed" byteby-byte and the exploit re-run to determine if the fault condition would still be induced by the attack. The table below indicates which bytes in the Data field, when changed, either fail to induce the fault or the attack operates as designed:

| Payload 2 - CIP generic class data generation section of the exploit |       |                                            |                                           |  |  |  |
|----------------------------------------------------------------------|-------|--------------------------------------------|-------------------------------------------|--|--|--|
| Position                                                             | Value | Exploit remains functional after<br>change | Byte offset in packet<br>from ENIP header |  |  |  |
| 1                                                                    | x07   | YES                                        | 52                                        |  |  |  |
| 2                                                                    | x4d   | YES                                        | 53                                        |  |  |  |
| 3                                                                    | x00   | YES                                        | 54                                        |  |  |  |
| 4                                                                    | x3d   | YES                                        | 55                                        |  |  |  |
| 5                                                                    | x09   | YES                                        | 56                                        |  |  |  |
| 6                                                                    | xa9   | YES                                        | 57                                        |  |  |  |
| 7                                                                    | x0a   | YES                                        | 58                                        |  |  |  |
| 8                                                                    | x0f   | NO                                         | 59                                        |  |  |  |
| 9                                                                    | x00   | YES                                        | 60                                        |  |  |  |
| 10                                                                   | x68   | YES                                        | 61                                        |  |  |  |
| 11                                                                   | xdd   | YES                                        | 62                                        |  |  |  |
| 12                                                                   | xab   | NO                                         | 63                                        |  |  |  |
| 13                                                                   | x02   | NO                                         | 64                                        |  |  |  |
| 14                                                                   | x02   | NO                                         | 65                                        |  |  |  |
| 15                                                                   | x84   | NO                                         | 66                                        |  |  |  |
| 16                                                                   | x05   | NO                                         | 67                                        |  |  |  |
| 17                                                                   | x00   | NO                                         | 68                                        |  |  |  |
| 18                                                                   | x08   | NO                                         | 69                                        |  |  |  |
| 19                                                                   | x00   | YES                                        | 70                                        |  |  |  |
| 20                                                                   | x08   | YES                                        | 71                                        |  |  |  |
| 21                                                                   | x00   | YES                                        | 72                                        |  |  |  |

Table 5. Table outlining the success of the attack when specific bytes of the data in the CIP Data field are modified

From the table above it appears that the byte values of more than half of the Data section appear to not affect the attack's success. The Snort alert rule was refined based on the information above and further tested.

The new Snort rule which was tested was as follows (note the sid was changed to determine when the "new" or refined rule was hit during testing):

alert tcp any any -> 10.0.0.135/32 44818 (msg: "Metasploit Cybati Allen-Bradley MicroLogix Major Fault Error detected!"; flow:established; flags:AP; content: "|OF|"; offset:59; depth:1; content: "|AB 02 02 84 05 00 08|"; offset:63; depth 7; sid:9999998; rev:1;)

The rule above was added to local.rules, Snort restarted, and Sguil opened again. The exploit was run once again and the new alert appeared as highlighted in the screenshot below.

| e <u>Q</u> u | ery <u>R</u> e | eports Sound  | i: Off Server | Name: localhost UserN | ame: <mark>student</mark> U | IserID: 2 | 2013-05    | 5-18 23:12:42 |
|--------------|----------------|---------------|---------------|-----------------------|-----------------------------|-----------|------------|---------------|
| RealTir      | me Eve         | nts Escalated | I Events      |                       |                             |           |            |               |
| ST           | CNT            | Sensor        | Alert ID      | Date/Time             | Src IP                      | SPort     | Dst IP     | DPort         |
| RT           | 1              | student-o     | 9.1           | 2013-05-17 06:54:09   | 10.0.10.1                   | 2600      | 10.0.0.30  | 9997          |
| RT           | 1              | student-o     | 9.2           | 2013-05-17 06:54:43   | 10.0.0.30                   | 52301     | 10.0.10.2  | 445           |
| RT           | 4              | student-o     | 9.3           | 2013-05-17 07:06:53   | 10.0.0.30                   | 52315     | 10.0.10.2  | 88            |
| RT           | 1              | student-o     | 8.1           | 2013-05-18 01:31:37   | 10.0.0.30                   | 49902     | 10.0.10.2  | 53            |
| RT           | 537            | student-o     | 8.8           | 2013-05-18 01:32:23   | 10.0.0.130                  | 51196     | 10.0.0.135 | 44818         |
| RT           | 8              | student-o     | 8.539         | 2013-05-18 16:26:10   | 10.0.0.130                  | 55315     | 10.0.0.135 | 44818         |
| RT           | 1              | student-o     | 9.8           | 2013-05-18 18:59:57   | 10.0.0.2                    | 24192     | 10.0.0.125 | 3389          |
| RT           | 1              | student-o     | 8.547         | 2013-05-18 23:12:14   | 10.0.0.130                  | 52740     | 10.0.0.135 | 44818         |
|              |                |               |               |                       |                             |           |            |               |

| IP Resolution Agent Status Sport Statistics | Show Packet Data Show Rule |                                                                   |                                |                      |                |           |  |
|---------------------------------------------|----------------------------|-------------------------------------------------------------------|--------------------------------|----------------------|----------------|-----------|--|
|                                             | alert tcp a                | alert tcp any any -> 10.0.0.135/32 44818 (msg: "Metasploit Cybati |                                |                      |                |           |  |
| Reverse DNS 	✓ Enable External DNS          | IP                         | Source IP                                                         | Dest IP                        | Ver HL T             | OS len         | ID lag    |  |
| Src IP:                                     |                            | 10.0.0.130                                                        | 10.0.0.135                     | 4 5 0                | 113            | 9205 2    |  |
| Src Name:                                   | тср                        | Source Dest R R<br>Port Port 10                                   | UAPRSF<br>RCSSYI<br>GKHTNN     | Seq #                | Ack #          | Offset le |  |
| Whois Query:  None  Src IP  Dst IP          |                            | 52740 44818                                                       | . X X 2                        | 005041586            | 38391383       | 5 0       |  |
|                                             | DATA                       | 70 00 31 00 D3                                                    | 3 60 B1 1E 00<br>A AA AA AA AA | 00 00 00<br>00 00 00 | 00 00<br>A1 AA | 00 00 I   |  |
|                                             |                            | 6                                                                 | oorob Dookot Do                | deed 0.1             | low G Tr       |           |  |

Figure 10. Sguil window with new alert added to local.rules and exploit run against the controller

#### Conclusion

The rules as written in either case should function appropriately as neither rule alerted upon normal controller to application network traffic, and only alerted upon running the exploit and creating the logical fault condition on the controller. Obviously the second rule is tighter as it only keys in on specific bytes in the Data field which cause the fault condition to occur. If more time to devote to this work was available it would be recommended that the CIP Data field and the various byte elements be examined further. While the elements of the CIP Data field which result in the setting of the S2:5/3 bit is known, the structure of this field is not known. Research on this topic has not produced a succinct definition of the Data field which could be applied to the attack being examined.

Although, many of the documents which define ENIP and CIP were examined to determine what the values in the CIP Command Specific Data section were nothing conclusive was determined. However,, it appears the byes in the Data field are related to the following table:

| Structure       | Field            | Bytes | Type       | Description                                   |
|-----------------|------------------|-------|------------|-----------------------------------------------|
| Packet Number   | Sequence Count   | 2     | UINT       | NOT IN UNCONNECTED MSG; requestor             |
| Message Router  | Service Code     | 1     | USINT      | 0x4B Execute PCCC service request code        |
| Service Request | Size of Req_Path | 1     | USINT      | 0x02 Path Size in words                       |
|                 | Request_Path     | size  | Array byte | EPATH 20,67 (class, PCCC); 24,01 (Instance 1) |
| MR Service      | Execute_PCCC     | 1     | USINT      | Lenght of Requestor ID (in bytes)             |
| Request Data    | Requestor ID     |       |            | (vendor + s/n + other + 1)                    |
|                 |                  | 2     | UINT       | CIP Vendor ID of requestor                    |
|                 |                  | 4     | UDINT      | CIP serial number                             |
|                 |                  | var   | Array byte | "Other" - may not be present                  |
|                 | Execute_PCCC     | 1     | USINT      | CMD - Command byte; typically 0x0F or 0x06    |
|                 | PCCC Command     | 1     | USINT      | STS - 0x00 in request                         |
|                 |                  | 2     | UINT       | TNSW - Same value in request and response     |
|                 |                  | 1     | USINT      | FNC - not used for all CMDs                   |
|                 |                  | var   | Array byte | PCCC CMD/FNC specific data 244 max            |

7-Jun-01

Copyright 2001©Rockwell Automation Technology Transfer and Services p22 of 43

If this is accurate, then the values we are keying in on in our Snort rules are:

0x0F – CMD byte

0xAB - FNC

0x02 0x02 0x84 0x05 0x00 0x08 - PCCC CMD/FNC specific data

One final note: research did turn up some proposed modifications to MicroLogix controller, specifically the 1200 and 1500 series controllers where the S2:5/3 bit will only be "clearable" through communication messages but not writable to mitigate the attack described in this submission. These changes were slated for firmware updates released in March 2013.