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Snort Signatures for AB/ML Metasploit
Major Fault Attack

Objective
The objective of this work was to write alert signatures for Snort to detect the Metasploit Fault attack on
the Allen-Bradley/Rockwell Automation MicroLogix 1400 series controllers. The first objective was to
write a Snort IDS rule that would detect the malicious traffic generated by the exploit. The second
objective was to write a rule that identifies only “approved traffic” and alerts on all other traffic by
tightening the Snort rule to only data that puts the controller into a fault state.

Approach

The approach to this work was to examine both the exploit in action through packet captures and
analysis, as well as through a review of the Metasploit .rb file which dictates how the packets will be
created and sent to the MicrolLogix controller. After understanding how the attack functioned a Snort
rule was written to detect traffic that matched the exploit traffic from a generic level. As the generic
rule may also trigger false positives on legitimate traffic sent to the controller, in addition to the attack,
the rule was refined. After refining the rule, the bytes in the CIP Generic Class section of the payload
which resulted in a successful fault attack were determined and used to further refine the rule using
offset and depth information.

Environment Setup
For the purposes of this report, the environment was setup as follows:

10/100 Network Allen-Bradley
Hub - replicates MicroLogix PLC

SecurityOnion VM all traffic 10.0.0.135

Snort 2.9/Sguil
Promiscuous mode

Backtrack 5 VM
Metasploit
10.0.0.130

Windows 7 VM
RSMicroLogix
10.0.0.125




Understanding the Exploit

To better understand the exploit and its operation, the function of the exploit through examination of its
usage in metsaploit was conducted. In addition, the ports and services that are “listening” or used by
the controller were examined through port scanning, the effect of the exploit on the $2:5/3 bit was
determined, and finally the attack was dissected through both packet capture and analysis and
examination of the .rb file to match what was observed on the wire.

Metasploit Examination

The exploit was loaded into Metasploit (located at /auxiliary/cybati/micrologix_fault). The options for
the attack were examined by running a “show options”. It appears that the only option that needs to be
set is the RHOST, as changing the port or attack type (as examined in the .rb file) modifies the attack in
such a way that the exploit will not function as designed. The screenshot below shows the use and
options of the attack:

~ v X root@bt: ~
File Edit View Terminal Help

/ of the Metasploit Frame
d that yo

RHOST 127.0.0.
RPORT 44818

Figure 1: Metasploit MicrolLogix attack options

The following screenshot shows successful execution of the attack against the controller (note the
connection and session IDs referred to in this document were not captured in this screenshot, this is to
illustrate the attack in Metasploit only):

) > set*"RHOST 10%0.07135

) > exploit

Figure 2: Metasploit MicroLogix attack execution
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Port Scanning

To examine what other ports may be a used in this attack on the MicroLogix controllers a full nmap scan

with options (-sT —n —v —p 1-65535) was run against the controller at 10.0.0.135. The results showed
two open ports (80/TCP and 44818/TCP) and one closed port (2222/TCP). Port 80/TCP is used for the
web interface to the controller, while 2222/TCP is shown as ENIP and 44818/TCP is an unknown service.
Itis likely that the 2222/TCP closed state is related to the fact that ENIP uses 2222/UDP for implicit
messaging and 44818/TCP is used for explicit messaging.

Examining the S2:5/3 Bit
To see the effect of the exploit on the controller, and to prove that the S2 file’s 5/3 bit is “set” as part of
the exploit, a before and after view of the bit status (using the controller’s web interface) was used. In

the first screenshot below we see that the $2:5/3 bit is off and the controller is running normally without

a fault indication.
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Figure 3: Status of the S2:5/3 bit prior to exploit being run

Next, the exploit was run against the controller which induced the fault condition. The interface was

again examined for the presence of the S2:5/3 bit being set. In the screenshot below we can see that
the bit is now set and the controller must be manually reset to “reset” the S2:5/3 bit.
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Figure 4: Status of the S2:5/3 bit post exploitation

Examining the Packets

Wireshark

To dissect how the attack operates Wireshark was used to capture packets on the network and the
results filtered to examine packets sent between Metasploit and the controller as part of the attack.
The packets, as show in the screenshot below, have the following characteristics:

The attack requires a total of 12 packets, in order the packets are:

o Packets 1-3: The TCP connection setup (SYN-SYN/ACK-ACK)
o Packets 4-6: Register an ENIP session to capture the ENIP Session ID
o Packets 7-8: Generate and capture the ENIP Connection ID
o Packet 9: Forge packet and send with CIP data which induces the fault
o Packets 10-12: Close the TCP connection (ACK-FIN/ACK/ACK-RST)
K6 ML Weiasglor 2 =

File Edit View Go Capture Analyze Statistics Telephony Tools Help

BEee PEXZE AesaTLIEE QAR @EB % B

Filter: ~ Expression.. Clear Apply
No. Time Source Destination Protocel Info
.~ 10.000000 10.0.0.130 10.0.0.135 TP 53436 > EtherNet/IP-2 [SYN] 5eq-1340407457 Win-14600 Len-0 MS5-1460 SACK_PERM-1 TSV-6993
| 20.005%5 10.0.0.135 10.0.0.130 TP EtherNet/IP-2 > 53436 [SYN, ACK] 5eq-B13180826 Ack=1340407458 Win=2000 Len=0 M55=1478
.0.0. .0.0. TCP 53436 > EtherNet/IP-2 [ACK] Seq=1340407458 Ack=813180827 win=14600 Len=0
ENIP Register Session (Req), Session: 0x00000000
ENIP Register Session (Rsp), Session: 0x73ES5CCAA
TCP 53436 > EtherNet/IP-2 [ACK] Seq=1340407486 Ack=813180855 win=14600 Len=0
CIP CM Forward Open
CIP CM success
CIP unknown Service (0x4b)

Ethernet/IP-2 > 53436 [ACK] 5eq=813180!
EtherNet /Tl

925 A
131,

Figure 5: Wireshark capture of the exploit traffic between Metasploit and the controller
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It appears that the forged packet (Packet 9) requires both a session and connection ID to succeed,
although these connections do not require authentication prior to being accepted and the attacker is
able to send the forged packet to the controller with minimal information being required on their part.

Packet and .rb Code Analysis

To further dissect the packets the options and data included with each packet were examined, including
ENIP and CIP options, to evaluate how the attack operates. The tables below show the opening of the
TCP connection, Session registration and capture of the Session ID, utilizing the Session ID to capture the
Connection ID, the attack, and the TCP connection close. In addition, a review of the associated .rb file
sections is included where necessary.

The TCP Connection open utilizes a standard open procedure:

1. TCP Connection Open

IP Header TCP Header
Packet number Src IP Dst IP TCP Flags Src port Dst Port
1 Metasploit Micrologix 1400 S 53436 44818
2 Micrologix 1400 Metasploit SA 44818 53436
3 Metasploit Micrologix 1400 A 53436 44818

Table 1: The TCP connection open from the attack

(note IP’s have been removed and replaced with system monikers)

The TCP open is simply part of the sock.put(packet) requirement that a TCP session be established prior
to sending the forged packets. The source port is chosen randomly from ephemeral ports. Although,
after several runs of the attack and analysis of the chosen source port it appears that ports above 50,000
are used. The destination port is set by the exploit through the RPORT setting and the target is set by
RHOST.

In terms of items to key in on to create a Snort signature we have:

e The source port will be random
e The destination port is that of the ENIP/CIP protocol which is 44818/TCP

Next, the exploit registers an ENIP session with the controller on 44818/TCP in order to generate a

Session ID. This Session ID will be captured by the module and used in the next series of packets to
capture the Connection ID which is required by the final attack packet. The truncated table below

shows some of the options as set by the exploit:




2. Register and Capture Session ID

IP Header TCP Header ENIP ENIP Header
TCP Src Dst
Packet SrcIP Dst IP Flags port Port Session Command Session
0x00000000 0x0065
Register Register 0x00000000
4 Metasploit Micrologix 1400 AP 53436 44818 Session Session Success
0x73E5CCAA 0x0065
Register Register 0x00000000
5 Micrologix 1400 Metasploit AP 44818 53436 Session Session Success
6 Metasploit Micrologix 1400 A 53436 44818 NA NA NA

Table 2: Session ID request and capture packets

In terms of actual code in the exploit module used to generate the packet above, we examine the
following section of code called regsession:

def regsession

packet =
packet += "\x65\x00" # ENCAP_CMD_REGISTERSESSION (2 bytes)

packet += "\x04\x00" # encap_length (2 bytes)

packet += "\x00\x00\x00\x00" # session identifier (4 bytes)

packet += "\x00\x00\x00\x00" # status code (4 bytes)

packet += "\x00\x00\x00\x00\x00\x00\x00\x00" # context information (8 bytes)
packet += "\x00\x00\x00\x00" # options flags (4 bytes)

packet += "\x01\x00" # proto (2 bytes)

packet += "\x00\x00" # flags (2 bytes)

begin
sock.put(packet)
response = sock.get_once(-1,8)
session_id = response(4..8].unpack("N")[0] # parse allocated session id
print_status("Got session id: Ox"+session_id.to_s(16))
TRUNCATED...

The code above generates the portion of the packet used to generate a Session ID through the 0x0065
(Register Session) value in the command field of the ENIP header. The variable “packet” is built up with
other options such as a session identified (0x0), status code (0x0 Success), and other options required by
the ENIP header. Again, full packet analysis is included as an attachment. The module then sends the
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packet using sock.put(packet) to the controller and evaluates the response. The response =

sock.get_once(-1,8) receives the packet back from the controller, and the “session_id” variable is

populated with the parsed response packet which contains the Session ID. If successful it prints the

Session ID to the console, and the truncated section handles errors and error messages.

In terms of items to key in on to create a Snort signature we have:

e The attacking system sends a 0x0065 ENIP command to the controller to elicit a session ID

response

e These packets are immediately preceded by the TCP connection setup

e The Session ID changes upon each subsequent connection and is of little value

e Some of these fields may cause false positives in the signature and should be ignored. The

Session ID capture mechanism does not contain the actual attack packet containing the CIP data

which sets the S2:5/3 fault bit to on

Once the Session ID is obtained, the attack can connect to the controller to obtain the required

Connection ID. The next series of packets elicit a response from the controller which allows the capture

the Connection ID (note, this is heavily truncated due to the sheer number of fields in ENIP and CIP

headers):
3. Using Session ID, Capture Connection ID
CIP Connection
IP Header ENIP ENIP Header CIP Manager
Session Request
Packet Src IP Dst IP Session Command Handle Service Path 0->T, T->0
Unknown
0x73E5CCAA Service Connection 0x80000015
Micrologix Send RR 0x006f 0x54 Manager 0x80FE0014
7 Metasploit 1400 Data Send RR Data 0x73E5CCAA (Request) (0x01)
Unknown
0x73E5CCAA Service Connection OxAACD2C6F
Micrologix Send RR 0x006f 0x54 Manager 0x80FE0014
8 1400 Metasploit Data Send RR Data 0x73E5CCAA (Response) (0x01)

Table 3: Using Session ID, request Connection ID and capture

The section of code in the module which creates these packets and captures the Connection ID are in

the section called reqconnection(sessionid). As we can see, the sessionid variable is passed to this

function as it is required to build a packet which will elicit the response required.

The code (truncated) is as follows:

def reqconnection(sessionid)

packet =

packet += "\x6f\x00" # SEND_RR_DATA (2 bytes)




packet += "\x3e\x00" # encap_length (2 bytes)
packet += [sessionid].pack("N") # session identifier (4 bytes) **in our case this was 0x735E5CCAA

packet += "\x00\x00\x00\x00" # status code (4 bytes)

packet += "\x00\x80" # O->T network connection id (2 bytes)
packet += "\x14\x00\xfe\x80" # T->0O network connection id (4 bytes) **this appears to be static
begin

sock.put(packet)

response = sock.get_once(-1,8)

connection_id = response[44..48].unpack("N")[0] # parse allocated connection id

print_status("Got connection id: 0x"+connection_id.to_s(16))

An analysis of the code shows that the packet is a Send RR Data request in the command field of the
ENIP header. The controller responds with a similar message that contains the 0->T network connection
ID. The response packet is parsed, looking at bytes 44-48, offset from the start of the ENIP header which
is directly after the TCP header we will find the Connection ID which will be stored in the connection_id
variable to be used in the attack packet generation. In the example the Connection ID was OXAACD2C6F.
Note that the packet hex in Wireshark that this value is stored in little Endian.

In terms of items to key in on to create a Snort signature we have:

e The static T->0 value as set 0x80FE0014 (note that in packet creation this is backwards due to
the Endian-ness of the field)

e The Session ID and controller Connection ID’s are both variable and subject to change and are
therefore of limited value in a signature

e These packets are immediately preceded by the ENIP registration packets

Once the attacker has the Session and Connection IDs it is possible to forge the attack pack which sets
the S2:5/3 bit and implements the fault error on the controller. The attack packet appears as follows
(truncated):
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4, Send Attack

IP Header ENIP ENIP Header CIP CIP Class Generic
Connection
Packet SrcIP Dst IP Session Command Length | ID Service Data
Unknown
0x73E5CCAA 0x0070 Service 07 4d 00 3d 09 a9 0a
Micrologix Send Unit Send Unit 0x4b 0f 00 68 dd ab 02 02 84
9 Metasploit 1400 Data Data 49 OxAACD2C6F (Request) 05 00 08 00 08 00
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Table 4: Attack packet attributes

The code that generates this relies upon building a packet in two part (payload1 and payload2) while
also injecting the Session and Connection ID gathered in packets 5 and 8. The code that generates the
attack packet is as follows:

def forgepacket(sessionid, connectionid, payloadl, payload2)
packet =""

packet += "\x70\x00" # command: SEND_UNIT_DATA (4 bytes)

packet += "\x31\x00" # length (4 bytes)

packet += [sessionid].pack("N") # session identifier (4 bytes) **our session ID was 0x73E5CCAA in this case

packet += payload1 #payloadl part

packet += [connectionid].pack("N") # connection identifier (4 bytes)

**our session ID was 0x73E5CCAA in this case

packet += payload?2 #payload2 part

begin

sock.put(packet)

This code combines all of the elements into the final attack packet. Payload 1 is somewhat uninteresting
in its options as it appears to simply include necessary data elements and fields as required by the
protocol. Payload2 presents a more interesting set of data, including one which is not seen in the
packets until now. The truncated code we examine next is as follows:

payload2 += "\xb1\x00" # connected data item
payload2 += "\x1d\x00" # length

payload2 += "\x7d\x14" # connection id




payload2 += "\x4b" # service

payload2 +="\x02" # request path size

payload2 += "\x20\x67\x24\x01" # request path

payload2 += "\x07\x4d\x00\x3d\x09\xa9\x0a\x0f\x00\x68" # cip class generic

payload2 += "\xdd\xab\x02\x02\x84\x05\x00\x08\x00\x08\x00" # cip class generic

The exploit appears to generate data which is located in the Data field of the CIP Generic Class section of
the packet which will be sent to the controller. To examine other “normal” network traffic between the
controller and the RSMicroLogix application, data during normal run operations as well as download
operations was captured to examine this contents of the Data field using Wireshark. The following
screenshot depicts legitimate Run operations when connected to the RSMicrolLogix application:

1l Leg NI ot coppenp - Wi T T

File Edit View Go Capture Analyze Statistics Telephon! Tools  Help

Beoed EEX2E A¢e»»aT L I([EE QB @M% L
Filter: ~ Ewpression.. Clear Apply
Ne. Time Source Destination Protocol Info
363 4.150619 10.0.0.125 10.0.0.135 CIP Unknown Service (0x4b)
364 4.154730 10.0.0.135 10.0.0.125 CIP success
365 4.178655 10.0.0.125 10.0.0.135 cip uUnknown Service (0x4b)
366 4.184658 10.0.0.135 10.0.0.125 cip success
367 4.218657 10.0.0.125 10.0.0.135 CcIP unknown service (0x4b)
368 4.224740 10.0.0.135 10.0.0.125 CIP success
369 4.240084 10.0.0.125 10.0.0.135 cip uUnknown Service (0x4b)
370 4.244819 10.0.0.135 10.0.0.125 cip success
371 4.278572 10.0.0.125 10.0.0.135 CcIP unknown Service (0x4b)
372 4.284661 10.0.0.135 10.0.0.125 CcIP success
373 4.310636 10.0.0.125 10.0.0.135 cip uUnknown Service (0x4b)
374 4.314797 10.0.0.135 10.0.0.125 CcIpP success
ITE A IAIAIR AN A N AIR 1N 0N 138 o tinknawn Sarwica fhvah)

1

Frame 363: 112 bytes on wire (896 bits), 112 bytes captured (896 bits)
Ethernet II, Src: 00:73:63:61:64:61 (00:73:63:61:64:61), Dst: Rockwell a4:01:96 (00:1d:9c:a4:01:9
Internet Protocol, Src: 10.0.0.125 (10.0.0.125), Dst: 10.0.0.135 (10.0.0.135)
# Transmission Control Protocol, Src Port: 49591 (49591), Dst Port: EtherNet/IP-2 (44818), Seq: 592
ethernet/IP (Industrial Protocol), Session: Ox2D55107F, Send RR Data
= Common Industrial Protocol
service: Unknown Service (0x4b) (Request)
Request Path size: 2 (words)
= Request Path: Class: Ox67, Instance: 0x01
= 8-Bit Logical Class Segment (0x20)
Class: unknown (0x67)
£ 8-Bit Logical Instance Segment (0x24)
Instance: 0x01
= CIP Class Generic
= Command Specific Data
Nata: 074n00NANIAIZ00600C00003

Figure 6: Wireshark capture between controller and RSMicroLogix application

In addition, a packet capture of a download of new code to the controller was examined which is
depicted in the screenshot below:
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1206 82.312233 10.0.0.150 10.0.0.135 TCP 51373 = E

1207 83.319642 10.0.0.150 10.0.0.135 CIP unknown S

1208 83.325316 10.0.0.135 10.0.0.150 CIP Success

1209 83.330176 10.0.0.150 10.0.0.135 CIP Unknown S

1210 83.335299 10.0.0.135 10.0.0.150 CIP Success

1211 £3.362708 10.0.0.150 10.0.0.135 CIP Unknown S
0.0 0.0.

1212 83.375506 10.

-135 10.

150 CIP Success

Fl

Frame 1205: 117 bytes on wire (936 bits), 117 bytes captured (936 bits)
= Ethernet II, src: Rockwell_a4:01:96 (00:1d:9c:a4:01:96), Dst: 00:73:63:61:64:¢
= Destination: 00:73:63:61:64:61 (00:73:63:61:64:61)
Address: 00:73:63:61:64:61 (00:73:63:61:64:61)
....... 0 .cvv weve weee wue. = IG bit: Individual address (umicast)
weee 2200 ool wee oues ov.. = LG bit: globally unique address (factory
= Source: Rockwell_a4:01:96 (00:1d:9c:a4:01:96)
Address: Rockwell_a4:01:96 (00:1d:9c:a4:01:96)
....... 0 vivs wavr wues waas = IG bit: Individual address (unicast)
evee 2aD0 ee es i v = LG bit: Globally unigque address (factory ¢
Type: IP (0x0800)
Internet Protocol, Src: 10.0.0.135 (10.0.0.135), Dst: 10.0.0.150 (10.0.0.150)
# Transmission cControl Protocol, Src Port: Ethernet/IP-2 (44818), Dst Port: 5131
= Ethernet/IP (Industrial Protocol), Session: 0x95262C31, Send Unit Data
= Encapsulation Header
Command: Send unit Data (0x0070)
Length: 39
Session Handle: 0x95262c31
Status: Ssuccess (0x00000000)
sender Context: 0000000000000000
options: 0x00000000
command specific pata
common Industrial Protocol
= €IP Class Generic
= Command Specific Data
Data: 074D002F5D731C4F0043023F00

Figure 7: Wireshark capture between controller and RSMicroLogix application w/download

Also worth noting is the fact that the Data field length in normal traffic between the controller and
application is variable, ranging from 13 to 36 bytes in length. The attack packet uses a static length of 21
bytes due to the construction of the Data field section by the exploit.

In terms of items to key in on to create a Snort signature we have:

e The attack packet contains a concatenation of payloadl, payload2, the Session ID, and the
Connection ID

e The Data field under the CIP Class Generic section appears to hold the data which flips the
$2:5/3 bit to on, causing the logical fault condition on the controller

e The Data field is static in this attack at 21 bytes in length as well as in content which is known by
examining either the packet capture or the exploit code itself

e The attack packet has a ENIP header length of 49 bytes as it is forged by Metasploit

Snort Rule -Round 1

Based on the information gathered to this point it is possible to write a generic Snort rule which will
alert on the attack traffic. Although it is a better practice to write the rule to catch the vulnerability, and
not the exploit, given that this attack is not “interactive” in the normal sense we are stuck writing the
rule to catch the exploit on the wire.




Here is the Snort rule which detects the flow, 44818/TCP port usage (note: it is set to alert on the IP of
the controller in the lab only), the flags in the TCP header, and the content utilizing offset and depth:

alert tcp any any -> 10.0.0.135/32 44818 (msg: “Metasploit Cybati Allen-Bradley MicroLogix Major
Fault Error detected!”; flow:established; flags:AP; content: “|70 00 31 00|”; offset:0; depth:4; content:
“14B 02 20 67 24 01 07 4D 00 3D 09 A9 OA OF 00 68 DD AB 02 02 84 05 00 08 00 08 00|”; offset:46;
depth 27; sid:9999999; rev:1;)

This rule has the following attributes:

e |t detects traffic flow from any IP, any source port to the controller destined for port 44818

e |t only alerts on established connected, as this attack relies on a TCP connection in order to get
the Session and Connection IDs that are required for attack

e It only alerts on a packet with the ACK and PSH flags set, as those are the flags set in the attack
packet

e [talertsif there is a content match at the beginning of the ENIP header (offset:0) if the first 4
bytes are 0x0070 followed by 0x0031 which is the command to Send Unit Data followed by a
header length of 49 bytes; AND

e The content in the CIP Generic Class section (offset:46), including the Data field, are a match on
content

e SID, Msg, and Rev are all generic settings used for testing the alert

Snort Rule -Round 1 Testing

The lab systems, as shown in the Lab Setup section, were used to run the attack and get the controller
into a fault state. Snort was loaded with the above rule under local.rules and was listening to all traffic
on the network and Sguil was used to examine the alerts received by Snort. The rule successfully alerts
each time the exploit is run against the system as shown in the screenshot below (note extensive testing
of the rules here as they were built up over time):

File Edit Search Options Help

Wamning, you are using the root account, you may harm your system.
alert tcp any any -> 10.0.0.135/32 44818 (msg: "Metasploit Cybati /-

Figure 8. Alert added to local.rules
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SGUIL-0.8.0 - Connected To localhost

File Query Reports Sound: Off ServerName: localhost UserName: student UserlD: 2 2013-05-18 16:09:29 GMT|

RealTime Events | Escalated Events|

Date/Time

2013-05-17 06:54:09  10.0.10.1 10.0.0.30

9.2 2013-05-17 06:54:43  10.0.0.30 52301 10.0.10.2 445
9.3 2013-05-17 07:06:53  10.0.0.30 52315 10.0.10.2 88
8.1 2013-05-18 01:31:37  10.0.0.30 49902 10.0.10.2 53
8.8 2013-05-18 01:32:23  10.0.0.130 51196 10.0.0.135 44818

o

1P Resciution | ] W Show Packet Data ¥ Show Rule
’ alert tcp any any -> 10.0.0.135/32 44818 (msg: "Metasploit Cybatl B
- 4
I Reversg DNS v Enable Extemal DNS 5 P Dest IP Ver HL TOS len ID |d
=ol= | 10.0.0.130 10.0.0.135 4 s o |40 |sss83)2]
Sre Name: UAPRSF
Dst IP: Source Dest RRRCSSY |
S Pot Pot 10GKHTNN Seq# Ack# Offsette
. B ————— 51196 44818 . |. . x|. . |. [x 3574140108 829371225 |5 .|[
f None. 1=
J [ . . | ~ biov G Towt " Mocad
w Menu @ [Terminal - root@... | ™ [SGUIL-0.8.0- Co... [ SGUIL-0.8.0- Con... ||

Figure 9. Sguil showing alerts (533 at this point) for alerts on the rule as described above in this section

Snort was left in a listening mode while further “non-exploit” traffic was sent between the controller
and RSMicroLogix application (i.e. connect, change mode to run/program, download new code, etc.).
No false-positive alerts were witnessed.




Snort Rule -Round 2

Keying in on the Data field, further examination of the values in this field may prove to be of interest in
writing the Snort rule or creating a tighter version of it to further limit false positive alerts. To test which
bytes of the Data field data affect the exploit, that individual bytes in the Data filed were “fuzzed” byte-
by-byte and the exploit re-run to determine if the fault condition would still be induced by the attack.
The table below indicates which bytes in the Data field, when changed, either fail to induce the fault or
the attack operates as designed:

Payload 2 - CIP generic class data generation section of the exploit
Exploit remains functional after Byte offset in packet
Position Value change from ENIP header
1 x07 YES 52
2 x4d YES 53
3 x00 YES 54
4 x3d YES 55
5 x09 YES 56
6 xa9 YES 57
7 x0a YES 58
8 xOf NO 59
9 x00 YES 60
10 X68 YES 61
11 xdd YES 62
12 xab NO 63
13 x02 NO 64
14 x02 NO 65
15 x84 NO 66
16 x05 NO 67
17 x00 NO 68
18 x08 NO 69
19 x00 YES 70
20 x08 YES 71
21 x00 YES 72

Table 5. Table outlining the success of the attack when specific bytes of the data in the CIP Data field are modified

From the table above it appears that the byte values of more than half of the Data section appear to not
affect the attack’s success. The Snort alert rule was refined based on the information above and further
tested.
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The new Snort rule which was tested was as follows (note the sid was changed to determine when the
“new” or refined rule was hit during testing):

alert tcp any any -> 10.0.0.135/32 44818 (msg: “Metasploit Cybati Allen-Bradley MicroLogix Major
Fault Error detected!”; flow:established; flags:AP; content: “|OF|”; offset:59; depth:1; content: “| AB
02 02 84 05 00 08|”; offset:63; depth 7; sid:9999998; rev:1;)

The rule above was added to local.rules, Snort restarted, and Sguil opened again. The exploit was run
once again and the new alert appeared as highlighted in the screenshot below.

SGUIL-0.8.0 - Connected To localhost

File Query Reports Sound: Off ServerName: localhost UserName: student UseriD: 2 2013-05-18 23:12:42 GMT

RealTime Evems] Escalated Events |

S Date/Time
RT 1 student-o... 9.1 2013-05-17 06:54:09 10.0.10.1 2600  10.0.0.30 9997
| RT 1 student-o... 9.2 2013-05-17 06:54:43  10.0.0.30 52301 10.0.10.2 445
RT 4 student-o... 93 2013-05-17 07:06:53  10.0.0.30 52315 10.0.10.2 88
RT 1 student-o... 81 20130518 01:31:37  10.0.0.30 49902  10.0.10.2 53
Bl s sweeno. 8.8 2013-05-18 01:3223  10.0.0.130 51196  10.0.0.135 44818
RT 8 student-o... 8.539 2013-05-18 16:26:10  10.0.0.130 55315 10.0.0.135 44818
dstudento 28 2013:0018 18:50.07 10002 241921000120
1 student-o... 8.547 2013-05-18 23:1214  10.0.0.130 52740 10.0.0.135 44818
o
v v
T ] ] _ v Show Packet Data v Show Rule
R alert tcp any any -> 10.0.0.135/32 44818 (msg: "Metasploit Cybati 4]
r -
Reverse DNS ¥ Enable Extemal DNS < s Dest® Ve HLTOS ®n 1D i
Tzl 10.0.0.130 10.0.0.135 4 5 o [113 o205 |2
Src Name: -
UAPRSF
Dst IP: Source Dest RRRCSSY |
e Pot Pot 10GKHTNN Seq# Ack# Offsette|
; 52740 |aa818|. |. . [x|x|. [. [. [2005041586/838301383 [5 ¢
Whois Query: * None 7 SiclIP  DstIP : - | | | -
70 00 31 00 D3 60 Bl 1E 00 0O 00 00 00 @O BO 88 |||
ﬁ AR AR AA AR AR AA AR AA AA AR AM AR A1 AM A2 AA |

Figure 10. Sguil window with new alert added to local.rules and exploit run against the controller




Conclusion

The rules as written in either case should function appropriately as neither rule alerted upon normal
controller to application network traffic, and only alerted upon running the exploit and creating the
logical fault condition on the controller. Obviously the second rule is tighter as it only keys in on specific
bytes in the Data field which cause the fault condition to occur. If more time to devote to this work was
available it would be recommended that the CIP Data field and the various byte elements be examined
further. While the elements of the CIP Data field which result in the setting of the S2:5/3 bit is known,
the structure of this field is not known. Research on this topic has not produced a succinct definition of
the Data filed which could be applied to the attack being examined.

Although, many of the documents which define ENIP and CIP were examined to determine what the
values in the CIP Command Specific Data section were nothing conclusive was determined. However,, it
appears the byes in the Data field are related to the following table:

Structure Field Bytes Type Description
Packet Number | Sequence Count 2 UINT NOT IN UNCONNECTED MSG: requestor
Message Router  Service Code 1 USINT 0x4B Execute PCCC service request code
Service Request  Size of Req Path | 1 USINT 0=02 Path Size in words
| Request_Path size Amaybyte | EPATH 20,67 (class, PCCC); 24,01 (Instance 1)
MR Service Execute PCCC ) USINT Lenght of Requestor ID (in bytes)
Request Data Requestor ID (vendor + s/n + other + 1)
2 UINT CIP Vendor ID of requestor
4 UDINT CIP serial number
var Amaybyte | "Other" - mav not be present
Execute_PCCC 1 USINT CMD - Command byte; typically 0x0F or 0x06
PCCC Command | 1 USINT STS - 0x00 in request
2 UINT TNSW - Same value in request and response
1 USINT FNC - not used for all CA[Ds
var Amaybyte | PCCC CMD/FNC specific data 244 max
7-Tun-01 Copyright 2001 @Rockwell Automation p22 of 43
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If this is accurate, then the values we are keying in on in our Snort rules are:
OxOF — CMD byte

OxAB — FNC

0x02 0x02 0x84 0x05 0x00 0x08 — PCCC CMD/FNC specific data

One final note: research did turn up some proposed modifications to MicroLogix controller, specifically
the 1200 and 1500 series controllers where the S2:5/3 bit will only be “clearable” through
communication messages but not writable to mitigate the attack described in this submission. These
changes were slated for firmware updates released in March 2013.
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